Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090304    DOI: 10.1088/0256-307X/28/9/090304
GENERAL |
Generation of Enhanced Three-Mode Continuously Variable Entanglement
YU You-Bin1**, WANG Huai-Jun1, FENG Jin-Xia2
1School of Science, Ningbo University of Technology, Ningbo 315211
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
Cite this article:   
YU You-Bin, WANG Huai-Jun, FENG Jin-Xia 2011 Chin. Phys. Lett. 28 090304
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generation of enhanced three-mode continuously variable (CV) entanglement via difference-frequency amplification in an optical cavity above the threshold is investigated. The quantum entanglement characteristics among the pump, signal, and idler beams are demonstrated by applying a sufficient inseparability criterion for CV entanglement proposed by van Loock and Furusawa. Bright three-mode CV entanglement with different frequencies can be generated in this simple system when the optical cavity operates above its threshold, and the best three-mode CV entanglement can be obtained when the pump threshold parameter is modulated at about σ=1.3.
Keywords: 03.67.Bg      03.67.-a      42.65.Yj     
Received: 19 October 2010      Published: 30 August 2011
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.-a (Quantum information)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090304       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU You-Bin
WANG Huai-Jun
FENG Jin-Xia
[1] Kimble H J 2008 Nature 453 1023
[2] Coelho A S et al 2009 Science 326 823
[3] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
Reid M D and Drummond P D 1989 Phys. Rev. A 40 4493
[4] Ou Z Y et al 1992 Phys. Rev. Lett. 68 3663
[5] Villar A S et al 2005 Phys. Rev. Lett. 95 243603
Li Y M et al 2010 Appl. Phys. Lett. 97 031107
[6] Villar A S et al 2006 Phys. Rev. Lett. 97 140504
[7] Eberly J H and Howell J C 2010 Nature Photon. 4 12
[8] Pfister O et al 2004 Phys. Rev. A 70 020302
[9] Guo J et al 2005 Phys. Rev. A 71 034305
[10] Yu Y B et al 2006 Phys. Rev. A 74 042332
Yu Y B et al 2008 Phys. Rev. A 77 032317
[11] Olsen and M K, Bradley A S 2006 Phys. Rev. A 74 063809
Midgley S L W et al 2010 Phys. Rev. A 81 063834
[12] Zhang X H et al 2010 Chin. Phys. Lett. 27 094208
Zhu Y Z et al 2010 Chin. Phys. Lett. 27 044210
Yu Y B et al 2011 Phys. Rev. A 83 012321
[13] Fabre C et al 1990 Quantum Opt. 2 159
[14] Drummond P D et al 1980 Opt. Acta 27 321
Drummond P D et al 1981 Opt. Acta 28 211
[15] Pennarun C, Bradley A S and Olsen M K 2007 Phys. Rev. A 76 063812
[16] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[17] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 090304
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 090304
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 090304
[4] YANG Jing,DU Shi-Feng,ZHANG Jing-Yuan,*,CAO Dong,CUI Da-Fu,PENG Qin-Jun,XU Zu-Yan*. Tomographic Imaging and Three-Dimensional Reconstruction Based on a High-Gain Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 090304
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 090304
[6] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 090304
[7] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 090304
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 090304
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090304
[10] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 090304
[11] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 090304
[12] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 090304
[13] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 090304
[14] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 090304
[15] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 090304
Viewed
Full text


Abstract