Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090303    DOI: 10.1088/0256-307X/28/9/090303
GENERAL |
Evolution of the Interference of Bose Condensates Released from a Double-Well Potential
ZHU Bi-Hui1,2,3, LIU Shu-Juan1,2, XIONG Hong-Wei1, 2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
3Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
ZHU Bi-Hui, LIU Shu-Juan, XIONG Hong-Wei 2011 Chin. Phys. Lett. 28 090303
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interference pattern of two Bose–Einstein condensates released from a double-well potential for different holding times is theoretically investigated using a decoupled two-mode Bose–Hubbard model. For two coherently separated condensates, the interference displays a periodic behavior, which is closely related to the atomic interaction. A remarkable parity effect is found in the interference patterns. For certain holding times, the even/odd total number of atoms would result in different interference fringes. The influences of different initial conditions on the evolution of interference and the observation of parity effects are discussed.
Keywords: 03.75.Dg      03.75.Kk      05.30.Jp     
Received: 24 May 2011      Published: 30 August 2011
PACS:  03.75.Dg (Atom and neutron interferometry)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Bi-Hui
LIU Shu-Juan
XIONG Hong-Wei
[1] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[2] Röhrl A, Naraschewski M, Schenzle A and Wallis H 1997 Phys. Rev. Lett. 78 4143
[3] Ashhab S and Leggett A J 2002 Phys. Rev. A 65 023604
[4] Cui B, Wu S L and Yi X X 2010 Chin. Phys. Lett. 27 070303
[5] Xu Z J, Zhang D M and Liu X Y 2011 Chin. Phys. Lett. 28 010305
[6] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[7] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nature Phys. 1 57
[8] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
[9] Wright E M, Wong T, Collett M J, Tan S M and Walls D F 1997 Phys. Rev. A 56 591
[10] Javanainen J and Wilkens M 1997 Phys. Rev. Lett. 78 4675
[11] Castin Y and Dalibard J 1997 Phys. Rev. A 55 4330
[12] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Nature 449 324
[13] Boukobza E, Chuchem M, Cohen D and Vardi A 2009 Phys. Rev. Lett. 102 180403
[14] Li W, Tuchman A K, Chien H C and Kasevich M A 2007 Phys. Rev. Lett. 98 040402
[15] Fattori M, D'Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 100 080405
[16] Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2007 Phys. Rev. Lett. 98 030407
[17] Chen Z D, Liang J Q, Shen S Q and Xie W F 2004 Phys. Rev. A 69 023611
[18] Lü R, Zhang M, Zhu J L and You L 2008 Phys. Rev. A 78 011605
[19] Piazza F, Pezzé L and Smerzi A 2008 Phys. Rev. A 78 051601
[20] Shchesnovich V S 2009 Phys. Rev. A 80 031601
[21] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[22] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51
[23] Bach R and Rzazewski K 2004 Phys. Rev. A 70 063622
[24] Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489
[25] Leggett A J and Sols F 1998 Phys. Rev. Lett. 81 1344
[26] Javanainen J and Wilkens M 1998 Phys. Rev. Lett. 81 1345
[27] Lu L H and Li Y Q 2009 Phys. Rev. A 80 033619
[28] Schumm T, Krüger P, Hofferberth S, Lesanovsky I, Wildermuth S, Groth S, Bar-Joseph I, Andersson L and Schmiedmayer J 2006 Quantum Information Processing 5 537
[29] Isella L and Ruostekoski J 2006 Phys. Rev. A 74 063625
[30] Javanainen J and Ivanov M Y 1999 Phys. Rev. A 60 2351
[31] Huang Y P and Moore M G 2008 Phys. Rev. Lett. 100 250406
[32] Raghavan S, Smerzi A, Fantoni S and Shenoy S R 1999 Phys. Rev. A 59 620
[33] Widera A, Trotzky S, Cheinet P, Fölling S, Gerbier F, Bloch I, Gritsev V, Lukin M D and Demler E 2008 Phys. Rev. Lett. 100 140401
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 090303
[2] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 090303
[3] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 090303
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 090303
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 090303
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 090303
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 090303
[8] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 090303
[9] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 090303
[10] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 090303
[11] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 090303
[12] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 090303
[13] DAN Lin, , YAN Hui, , WANG Jin, ZHAN Ming-Sheng,. Chip-Based Square Wave Dynamic Micro Atom Trap[J]. Chin. Phys. Lett., 2010, 27(5): 090303
[14] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 090303
[15] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 090303
Viewed
Full text


Abstract