Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090302    DOI: 10.1088/0256-307X/28/9/090302
GENERAL |
Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling
LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi**
Department of Physics, College of Science, National University of Defense Technology, Changsha 410073
Cite this article:   
LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi 2011 Chin. Phys. Lett. 28 090302
Download: PDF(478KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme to implement quantum information transfer between Cooper-pair boxes (CPBs) in a circuit quantum electrodynamic (QED) system with Landau–Zener tunneling. The system consists of two CPB qubits and a one-dimensional transmission line resonator (TLR). By analytically solving the eigenequation and numerically calculating the transition probability, the results show the quantum state transfer from one qubit to another via a fast adiabatic passage. The coupling mechanism is robust against decoherence effects.
Keywords: 03.67.+a      85.25.-j      42.50.Pq     
Received: 17 April 2011      Published: 30 August 2011
PACS:  03.67.+a  
  85.25.-j (Superconducting devices)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jun-Wang
WU Chun-Wang
DAI Hong-Yi
[1] You J Q and Nori F 2005 Phys. Today 58 42
[2] You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510
[3] Ithier G et al 2005 Phys. Rev. B 72 134519
[4] Wallraff A et al 2005 Phys. Rev. Lett. 95 060501
[5] Majer J B et al 2005 Phys. Rev. Lett. 94 090501
[6] Plastina F and Falci G 2003 Phys. Rev. B 67 224514
[7] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[8] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[9] Blais A et al 2004 Phys. Rev. A 69 062320
[10] Liu Y X et al 2005 Phys. Rev. Lett. 95 087001
[11] Wu Q Q et al 2008 Chin. Phys. Lett. 25 1179
[12] Wei L F et al 2008 Phys. Rev. Lett. 100 113601
[13] Wu L A et al 2009 Phys. Rev. A 80 042315
[14] Li P B et al 2009 Phys. Rev. A 79 042339
[15] Feng Z B et al 2010 Opt. Commun. 283 1975
[16] Johansson J et al 2009 Phys. Rev. B 80 012507
[17] Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[18] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[19] Fink J M et al 2008 Nature 454 315
[20] Ng H T and Nori F 2010 Phys. Rev. A 82 042317
[21] Day P K et al 2003 Nature 425 817
Related articles from Frontiers Journals
[1] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 090302
[2] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 090302
[3] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 090302
[4] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 090302
[5] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 090302
[6] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 090302
[7] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 090302
[8] ZHONG Zhi-Rong**, ZHANG Bin, LIN Xiu, SU Wan-Jun . An Effective Heisenberg Spin Chain in a Fiber-Cavity System[J]. Chin. Phys. Lett., 2011, 28(12): 090302
[9] ZOU Wei-Ping, ZHANG Gang, XUE Zheng-Yuan** . Arbitrary and Fast Quantum Gate with Semiconductor Double-Dot Molecules on a Chip[J]. Chin. Phys. Lett., 2011, 28(12): 090302
[10] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 090302
[11] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 090302
[12] LIN Xiu. Scheme for Generating a χ-Type Four-Atom Entangled State in Cavity QED[J]. Chin. Phys. Lett., 2010, 27(4): 090302
[13] ZHU Yu-Zhu, HU Xiang-Ming, WANG Fei, LI Jing-Yan. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects[J]. Chin. Phys. Lett., 2010, 27(4): 090302
[14] JIN Li-Xia, LüXin-You, SONG Pei-Jun, YANG Xiao-Xue. Tripartite Entanglement via Microwave Driven Atomic Coherence[J]. Chin. Phys. Lett., 2010, 27(4): 090302
[15] LV Dan-Dan, LU Hong, YU Ya-Fei, FENG Xun-Li, ZHANG Zhi-Ming,. Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics[J]. Chin. Phys. Lett., 2010, 27(2): 090302
Viewed
Full text


Abstract