Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 076803    DOI: 10.1088/0256-307X/28/7/076803
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Growth of Graphene Nanoribbons and Carbon Onions from Polymer
GUO Xiao-Song, LU Bing-An, XIE Er-Qing**
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Physical Science and Technology School, Lanzhou University, Lanzhou 730000
Cite this article:   
GUO Xiao-Song, LU Bing-An, XIE Er-Qing 2011 Chin. Phys. Lett. 28 076803
Download: PDF(2413KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Graphene nanoribbons and carbon onions are directly prepared by electron beam irradiation of polyacrylonitrile and expanded polystyrene nanofibers, respectively. By controlling the irradiation process in a high resolution transmission electron microscope, the number of layers of the graphene nanoribbons, as well as the dimension of the carbon onions, can be controlled. It is found that the initial diameter of the nanofiber has a strong effect on the final results. A mechanism is proposed to explain the transformation of polymer nanofibers to carbon nanostructures under electron beam irradiation. This supposes that the polymer nanofibers are first carbonized and then graphitized as a result of the high energy electrons. According to the mechanism, it is believed that all polymer nanofibers could be carbonized and then converted to graphene nanoribbons by proper electron beam irradiation.
Keywords: 68.35.Bm      68.37.Lp      61.48.Gh      62.23.Kn     
Received: 03 June 2011      Published: 29 June 2011
PACS:  68.35.bm (Polymers, organics)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  61.48.Gh (Structure of graphene)  
  62.23.Kn (Nanosheets)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/076803       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/076803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Xiao-Song
LU Bing-An
XIE Er-Qing
[1] Elias D C et al 2010 Science 323 610
[2] Novoselov K S et al 2004 Science 306 666
[3] Zhang Y et al 2005 Nature 438 201
[4] Schedin F et al 2007 Nat. Mater. 6 652
[5] Park S and Ruoff R S 2009 Nat. Nano. 4 217
[6] Ismach A et al 2009 Nano. Lett. 10 1542
[7] Wu Z S et al 2009 Acs nano. 3 411
[8] Turchanin A, Beyer A, Nottbohm C T, Zhang X, Stosch R, Sologubenko A, Mayer J, Hinze P and Weimann T 2009 Adv. Mater. 21 1233
[9] Banhart F 1999 Repo. Prog Phys. 62 1181
[10] Ugarte D 1992 Nature 359 707
[11] Banhart F and Ajayan P M 1996 Nature 382 433
[12] Smith B W, Monthioux M and Luzzi D E 1998 Nature 396 323
[13] Duan H, Xie E, Han L and Xu Z 2008 Adv. Mater. 20 3284
[14] Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, Wang Y, Li X, Wang W, Lan W and Xie E 2010 Small 6 1612
Related articles from Frontiers Journals
[1] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 076803
[2] DING Tao, SONG Jun-Qiang, LI Juan, CAI Qun** . Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface[J]. Chin. Phys. Lett., 2011, 28(6): 076803
[3] GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei . Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process[J]. Chin. Phys. Lett., 2011, 28(3): 076803
[4] LI Jin, SUN Li-Zhong, ZHONG Jian-Xin. Strain Effects on Electronic Properties of Boron Nitride Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(7): 076803
[5] LIU Li-Hu, GU Jian-Jun, , LI Hai-Tao, , CAI Ning, SUN Hui-Yuan,. Synthesis and Characteristics of Electrodeposited CoxZn1-x Nanorods[J]. Chin. Phys. Lett., 2010, 27(6): 076803
[6] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 076803
[7] JIANG Zhi-Ang, CHEN Jiang-Tao, WANG Jun, ZHUO Ren-Fu, YAN De, ZHANG Fei, YAN Peng-Xun. CuO Nanosheets Synthesized by Hydrothermal Process[J]. Chin. Phys. Lett., 2009, 26(8): 076803
[8] LI Wei-Long, JIA Rui, LIU Ming, CHEN Chen, XIE Chang-Qing, ZHU Chen-Xin, LI Hao-Feng, ZHANG Pei-Wen, YE Tian-Chun. Fabrication and Characterization of Si Nanocrystals Synthesized by Electron Beam Evaporation of Si and SiO2 Mixture[J]. Chin. Phys. Lett., 2009, 26(4): 076803
[9] DENG Jiang-Xia, YAN Shi-Shen, MEI Liang-Mo, J. P. Liu, B. Altuncevahir, V. Chakka, WANG Yong, ZHANG Ze, SUN Xiang-Cheng, J. Lian, K. Sun. Magnetic Properties and Antiferromagnetic Coupling in Inhomogeneous Zn1-xFexO Magnetic Semiconductor[J]. Chin. Phys. Lett., 2009, 26(2): 076803
[10] LIU Xu-Yan, LIU Wei-Li, MA Xiao-Bo, CHEN Chao, SONG Zhi-Tang, LIN Cheng-Lu. Growth of High Quality Strained-Si on Ultra-Thin SiGe-on-Insulator Substrate[J]. Chin. Phys. Lett., 2009, 26(11): 076803
[11] PENG Ming-Zeng, GUO Li-Wei, ZHANG Jie, YU Nai-Sen, ZHU Xue-Liang, YANJian-Feng, GE Bin-Hui, JIA Hai-Qiang, CHEN Hong, ZHOU Jun-Ming. Three-Step Growth Optimization of AlN Epilayers by MOCVD[J]. Chin. Phys. Lett., 2008, 25(6): 076803
[12] ZHAO Yu-Cheng, WANG Ming-Zhi. Cubic BN Sintered with Al under High Temperature and High Pressure[J]. Chin. Phys. Lett., 2007, 24(8): 076803
[13] XING Zhi-Gang, WANG Jing, PEI Xiao-Jiang, WAN Wei, CHEN Hong, ZHOU Jun-Ming. Dislocation Reduction Mechanisms in Gallium Nitride Films Grown by Canti-Bridge Epitaxy Method[J]. Chin. Phys. Lett., 2007, 24(8): 076803
[14] LIU Yan-Yan, ZHANG Qing-Yu, Elizabeth BAUER-GROSSE. Vacancy Aggregation in Diamond Films grown in CH4+H2 Atmosphere by MPCVD[J]. Chin. Phys. Lett., 2007, 24(12): 076803
[15] HOU Ting-Ping, WANG Ren-Hui, GUI Jia-Nian, WANG Jian-Bo, ZHAO Dong-Shan, GUO Jun-Qing. Experimental Observation on Orientation Relationship between Binary Cd5.7Yb Quasicrystal and its Crystalline Approximant Cd6Yb[J]. Chin. Phys. Lett., 2006, 23(5): 076803
Viewed
Full text


Abstract