Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 070302    DOI: 10.1088/0256-307X/28/7/070302
GENERAL |
Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique
WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, Shanxi University, Taiyuan 030006
Cite this article:   
WANG Xiao-Bo, WANG Jing-Jing, HE Bo et al  2011 Chin. Phys. Lett. 28 070302
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photon-counting optical time domain reflectometry (v-OTDR) is typically used in a mode with spatial resolution in the centimeter range. Here we demonstrate a 1550 nm v-OTDR system to optimize the discriminate voltage of a single photon avalanche detector using a single photon modulation and demodulation technique, which shows obvious improvement in the signal intensity. The intensity of signal is doubled when the discriminator voltage is optimized from 184 mV to 162 mV.
Keywords: 03.67.Dd      03.67.Hk      42.81.Wg     
Received: 11 March 2011      Published: 29 June 2011
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.81.Wg (Other fiber-optical devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/070302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Bo
WANG Jing-Jing
HE Bo
XIAO Lian-Tuan
JIA Suo-Tang
[1] Derickson D 1998 Fiber Optic Tests and Measurement (Prentice: Prentice-Hall)
[2] Wegmüller M, Scholder F and Gisin N 2004 J. Lightwave Technol. 22 390
[3] Diamanti E, Langrock C, Fejer M M and Yamamoto Y 2006 Opt. Lett. 31 727
[4] Ripamonti G, Zappa F and Cova S 1992 J. Lightwave Technol. 10 1398
[5] Scholder F, Gautier J D, Wegmüller M and Gisin N 2002 Opt. Commun. 213 57
[6] Areccht F T, Gatti E and Sona A 1966 The Review of Scientific Instruments 37 942
[7] Huang T, Dong S L, Guo X J, Xiao L T and Jia S T 2006 Appl. Phys. Lett. 89 061102
[8] Lacaita A, Francesco P A, Cova S and Ripamonti G 1993 Opt. Lett. 18 1110
[9] Dong S L, Huang T, Xiao L T and Jia S T 2007 Phys. Rev. A 76 063820
[10] Van D A P and Kwiat P G 2004 J. Mod. Opt. 51 1433
[11] Roussev R V, Langrock C, Kurz J R and Fejer M M 2004 Opt. Lett. 29 1518
[12] Albota M A and Wong F N C 2004 Opt. Lett. 29 1449
[13] Zhang J Y, Zhou Z W, Guo G C 2011 Chin. Phys. Lett. 28 050301
[14] Thew R T, Tanzilli S, Krainer L, Zeller S C, Rochas A, Rech I, Cova S, Zbinden H and Gisin N 2006 New J. Phys. 8 32
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 070302
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 070302
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 070302
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 070302
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 070302
[6] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 070302
[7] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 070302
[8] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 070302
[9] WANG Fei, **, ZHANG Xin-Liang, YU Yu, XU En-Ming . Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter[J]. Chin. Phys. Lett., 2011, 28(6): 070302
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 070302
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 070302
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 070302
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 070302
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 070302
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 070302
Viewed
Full text


Abstract