Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 067104    DOI: 10.1088/0256-307X/28/6/067104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Voronoi Structural Evolution of Bulk Silicon upon Melting
ZHANG Shi-Liang1, ZHANG Xin-Yu1, WANG Lin-Min1, QI Li1, ZHANG Su-Hong1, ZHU Yan1,2, LIU Ri-Ping1**
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
2College of Physics and Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066004
Cite this article:   
ZHANG Shi-Liang, ZHANG Xin-Yu, WANG Lin-Min et al  2011 Chin. Phys. Lett. 28 067104
Download: PDF(651KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation. At temperatures below the melting point, the solid state system is identified to have a four-fold coordination structure 4,0,0,0. As the temperature increases, the five−fold coordination 2,3,0,0 and six−fold coordination structures 2,2,2,0 and 0,6,0,0 are observed. This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others. At temperatures above the melting point, nearly all of the four-fold coordination structures grows into multiple-fold coordination ones.
Keywords: 71.15.Pd      61.72.Tt      64.70.Dv     
Received: 28 March 2011      Published: 29 May 2011
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  61.72.Tt  
  64.70.Dv  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/067104       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/067104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shi-Liang
ZHANG Xin-Yu
WANG Lin-Min
QI Li
ZHANG Su-Hong
ZHU Yan
LIU Ri-Ping
[1] Mei Q S and Lu K 2007 Prog. Mater. Sci. 52 1175
[2] Cahn R W 2001 Nature 413 582
[3] Tallon J L 1978 Nature 276 849
[4] Cahn R W 1978 Nature 273 491
[5] Cahn R W 1986 Nature 323 668
[6] Cahn R W 1992 Nature 356 108
[7] Cahn R W 1989 Nature 342 619
[8] Han L B, An Q, Fu R S, Zheng L Q and Lou S N 2010 Physica B: Conden. Matter 405 748
[9] Alsayed A M, Islam M F, Zhang J, Collings P J and Yodh A G 2005 Science 309 1207
[10] Song H, Fensin S J, Asta M and Hoyt J J 2010 Scripta Mater. 63 128
[11] Liu R P, Herlach D M, Vandyoussefi M and Greer A L 2004 Metall. Mater. Trans. A 35 1067
[12] Tang F L, Cheng X G, Lu W J and Yu W Y 2010 Physica B: Conden. Matter 405 1248
[13] Lu K and Li Y 1998 Phys. Rev. Lett. 80 4474
[14] Jin Z H, Gumbsch P, Lu K and Ma E 2001 Phys. Rev. Lett. 87 055703
[15] Finney J L 1970 Proc. R. Soc. London A 319 484
[16] Tsumuraya K and Ishibashi K 1993 Phys. Rev. B 47 8552
[17] Jedlovszky P 1999 J. Chem. Phys. 111 5975
[18] Xiao S F and Hu W Y 2006 J. Chem. Phys. 125 014503
[19] Pan S P, Qin J Y and Gu T K 2010 J. Non-Cryst. Solid 356 1374
[20] Feng Y, Goree J and Liu B 2010 Phys. Rev. Lett. 104 165003
[21] Cheng Y Q and Ma E 2010 Prog. Mater. Sci. 56 379
[22] An X Z 2007 Chin. Phys. Lett. 24 2327
[23] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[24] Rifkin J 2005 XMD-Molecular Dynamics Program ver 2.5.34-1
[25] Verlet L 1967 Phys. Rev. B 159 98
[26] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[27] Tersoff J 1986 Phys. Rev. Lett. 56 632
Tersoff J 1988 Phys. Rev. B 38 9902
Tersoff J 1989 Phys. Rev. B 39 5566
[28] Bazant M Z, Kaxiras E and Justo J F 1997 Phys. Rev. B 56 8542
[29] Baskes M I 1987 Phys. Rev. Lett. 59 2666
Lee B 2007 Calphad 31 95
Maria T and Thijsse B J 2010 Comput. Mater. Sci. 48 609
[30] Kumagai T, Izumi S, Hara S and Sakai S 2007 Comput. Mater Sci. 39 457
[31] Jing Y H, Meng Q Y and Zhao W 2009 Physica E 41 685
[32] Cook S J and Clancy P 1993 Phys. Rev. B 47 7686
[33] Schelling P K 2008 Comput. Mater. Sci. 44 274
[34] Zhang S L, Zhang X Y, Qi L, Wang L M, Zhang S H, Zhu Y and Liu R P 2011 Physica B: Conden. Matter (in press)
[35] Fang K C and Weng C I 2005 Nanotechnology 16 250
[36] Tang Y W, Wang J and Zeng X C 2006 J. Chem. Phys. 124 236103
[37] Horsfield A P Clancy P 1994 Modelling Simul. Mater. Sci. Eng. 2 277
[38] Buta D, Asta M and Hoyt J J 2008 Phys. Rev. E 78 031605
[39] Yoo S and Zeng X C 2004 J. Chem. Phys. 120 1654
[40] Liu C S, Zhu Z G, Xia J C and Sun D Y 1999 Phys. Rev. B 60 3194
[41] Ishimaru M, Yoshida K and Motooka T 1996 Phys. Rev. B 54 4638
[42] Waseda Y, Shinoda K, Sugiyama K, Takeda S, Terashima K and Toguri J Ml 1995 Jpn. J. Appl. Phys. 34 4124
[43] Broughton J Q and Li X P 1987 Phys. Rev. B 35 9120
Related articles from Frontiers Journals
[1] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 067104
[2] CAO Bing, ZHANG Wei, HUAI Ping, ZHU Zhi-Yuan. Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models[J]. Chin. Phys. Lett., 2009, 26(8): 067104
[3] LUO Ming-Yan, SONG Kun, ZHANG Xu, LEE Imshik. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium[J]. Chin. Phys. Lett., 2009, 26(1): 067104
[4] QIAO Er-Wei, ZHENG Hai-Fei, XU Bei. Raman Scattering Spectroscopy of Phase Transition in n-Pentadecane under High Temperature and High Pressure[J]. Chin. Phys. Lett., 2009, 26(1): 067104
[5] ZHANG Xiu-Lu, CAI Ling-Cang, CHEN Jun, XU Ji-An, JING Fu-Qian,. Melting Behaviour of Mo by Shock Wave Experiment[J]. Chin. Phys. Lett., 2008, 25(8): 067104
[6] ZENG Zhao-Yi, CHEN Xiang-Rong, , ZHU Jun, HU Cui-E,. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2008, 25(1): 067104
[7] YAO Wen-Jing, DAI Fu-Ping, WEI Bing-Bo. Solute Distribution within Rapidly Grown Fe--Co Single Phase[J]. Chin. Phys. Lett., 2007, 24(2): 067104
[8] ZHANG Jian-Guo, WANG Xiao-Xin, CHENG Bu-Wen, YU Jin-Zhong, WANG Qi-Ming. Near Infrared Photoluminescence from Yb,Al Co-implanted SiO2 Films on Silicon[J]. Chin. Phys. Lett., 2006, 23(8): 067104
[9] CHEN Xiao-Ming, FEI Guang-Tao, CUI Ping. Size-Dependent Melting Behaviour of Nanometre-Sized Pb Particles Studied by Dynamic Mechanical Analysis[J]. Chin. Phys. Lett., 2006, 23(6): 067104
[10] SUN Yu-Huai, HUANG Hai-Jun, LIU Fu-Sheng, YANG Mei-Xia, JING Fu-Qian,. A Direct Comparison between Static and Dynamic Melting Temperature Determinations below 100GPa[J]. Chin. Phys. Lett., 2005, 22(8): 067104
[11] ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of[J]. Chin. Phys. Lett., 2005, 22(8): 067104
[12] ZHENG Zhong-Shan, LIU Zhong-Li, ZHANG Guo-Qiang, LI Ning, FAN Kai, ZHANG En-Xia, YI Wan-Bing, CHEN Meng, WANG Xi. Effects of Techniques of Implanting Nitrogen into Buried Oxide on the Characteristics of Partially Depleted SOI PMOSFET[J]. Chin. Phys. Lett., 2005, 22(3): 067104
[13] CHEN Qi-Feng, CAO Xiao-Lin, ZHANG Ying, CAI Ling-Cang, CHEN Dong-Quan. Parallel Molecular Dynamics Simulations of Ejection from the Metal Cu and Al Under Shock Loading[J]. Chin. Phys. Lett., 2005, 22(12): 067104
[14] ZHANG En-Xia, YI Wan-Bing, LIU Xiang-Hua, CHEN Meng, LIU Zhong-Li, Wang Xi. Silicon-on-Insulating Multi-Layers for Total-Dose Irradiation Hardness[J]. Chin. Phys. Lett., 2004, 21(8): 067104
[15] WANG Nan, WEI Bing-Bo. Droplet Undercooling During Containerless Processing in a Drop Tube[J]. Chin. Phys. Lett., 2004, 21(6): 067104
Viewed
Full text


Abstract