Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 058201    DOI: 10.1088/0256-307X/28/5/058201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Interaction of a Spherical Colloid and a Porous Membrane in a Bulk Electrolyte
LIAN Zeng-Ju**
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LIAN Zeng-Ju 2011 Chin. Phys. Lett. 28 058201
Download: PDF(625KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A systemic computation of an electrostatic interaction between a charged spherical colloid and a charged porous membrane with a fixed potential is made under the linear Poisson–Boltzmann theory. The colloid moves along the symmetry axis of the membrane and they are both immersed in a bulk electrolyte. In the calculation, a significant attraction between the colloid and the membrane is found. The orifices on or around the centre of the membrane play a major role in the attraction. The effect of the reduced orifice sizes of the membrane on the interaction is taken into account. Furthermore, the electrostatic interaction energies are significantly changed by the variation of ionic strengths (concentration and valence relating the Dybe length).
Keywords: 82.70.Dd      82.45.Gj      82.45.Wx      82.35.Rs     
Received: 05 January 2011      Published: 26 April 2011
PACS:  82.70.Dd (Colloids)  
  82.45.Gj (Electrolytes)  
  82.45.Wx (Polymers and organic materials in electrochemistry)  
  82.35.Rs (Polyelectrolytes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/058201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/058201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAN Zeng-Ju
[1] Meeren P V, Saveyn H, Kassa S B, Doen W and Leysen R 2004 Phys. Chem. Chem. Phys. 6 1408
[2] Hilal N, Ogunbiyl O O, Miles N J and Nigmatullin R 2005 Sep. Sci. Technol. 40 1957
[3] Vrijenhoek E M, Hong S and Elimelech M 2001 J. Membrane Sci. 188 115
[4] Hoek E M V, Bhattacharjee S and Elimelech M 2003 Langmuir 19 4836
[5] Tang C Y, Kwona Y and Leckiea J O 2009 Desalination 242 149
[6] Shi X Q and Ma Y Q 2007 J. Chem. Phys. 126 125101
[7] Hong S and Elimelech M 1997 J. Membrane Sci. 132 159
[8] Burgh S V D, Fokkink R, Keizer A D and Stuart M A C 2004 Colloids and Surfaces A: Physicochem. Eng. Aspects 242 167
[9] Derjaguin B V and Landau L D 1941 Acta Physicochim. URSS 14 633
[10] Verwey E J W and Overbeek J T G 1948 Theory of the Stability of Lyophobic Colloids (Amsterdam: Elsevier)
[11] Brant J A and Childress A E 2002 J. Membrane Sci. 203 257
[12] Meagher L, Klauber C and Pashley R M 1996 Colloids Surf. A: Physicochem. Eng. Aspects 106 63
[13] Tian W D and Ma Y Q 2011 Soft Matter 7 500
[14] Chen W, Tan S, Ng T K, Ford W T and Tong P 2005 Phys. Rev. Lett. 95 218301
[15] Grier D G and Han Y 2007 Phys. Rev. E 76 041406
[16] Tian W D and Ma Y Q 2009 J. Phys. Chem. B 113 13161
[17] Wang Z Y and Ma Y Q 2009 J. Chem. Phys. 131 244715
[18] Gluckman M J, Pfeffer R and Weinbaum S 1971 J. Fluid Mech. 50 705
[19] Weinbaum S, Ganatos P and Yan Z Y 1990 Ann. Rev. Fluid Mech. 22 275
[20] Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T and Teramae N 2004 Nature Mater. 3 337
[21] Raoa M B and Sircar S 1993 J. Membrane Sci. 85 253
[22] Keh H J and Lien L C 1991 J. Fluid Mech. 224 305
Related articles from Frontiers Journals
[1] M. Todica**, C. V. Pop, Luciana Udrescu, Traian Stefan . Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System[J]. Chin. Phys. Lett., 2011, 28(12): 058201
[2] M. Todica. Analysis of Rheological Behavior of Some Aqueous PEO Gels under Thermal Treatment[J]. Chin. Phys. Lett., 2009, 26(7): 058201
[3] M. Todica. Observation of Hydration--Drying Effect on Clotrimazole--Carbopol System[J]. Chin. Phys. Lett., 2008, 25(7): 058201
[4] ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 058201
[5] YAO Can, WANG Yu-Ren, LAN Ding, DUAN Li, KANG Qi. An in-situ Observation on Initial Aggregation Process of Colloidal Particles near Three-Phase Contact Line of Air, Water and Vertical Substrate[J]. Chin. Phys. Lett., 2008, 25(10): 058201
[6] GUO Ji-Yuan, XIAO Chang-Ming. Grand Canonical Ensemble Monte Carlo Simulation of Depletion Interactions in Colloidal Suspensions[J]. Chin. Phys. Lett., 2008, 25(1): 058201
[7] CHEN Jiang-Xing, JIAO Zheng-Kuan. Mode-Locking Behaviour in Driven Colloids with Random Pinning[J]. Chin. Phys. Lett., 2007, 24(4): 058201
[8] PU Sheng-Li, CHEN Xian-Feng, DI Zi-Yun, GENG Tao, XIA Yu-Xing. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(11): 058201
[9] LI Chun-Shu, GAO Hai-Xia, XIAO Chang-Ming. Depletion Interactions in a Cylindric Pipeline with a Small Shape Change[J]. Chin. Phys. Lett., 2007, 24(11): 058201
[10] XIAO Chang-Ming, GUO Ji-Yuan, HU Ping. A Monte Carlo Study of Influences on Depletion Force from Another Large Sphere in Colloidal Suspensions[J]. Chin. Phys. Lett., 2006, 23(4): 058201
[11] SUN Zhi-Wei, LIU Jie, XU Sheng-Hua. Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number[J]. Chin. Phys. Lett., 2005, 22(8): 058201
[12] GUO Ji-Yuan, LI Chun-Shu, XIAO Chang-Ming. Effect of Geometrical Confinement on Depletion Interactions in Colloidal Suspensions[J]. Chin. Phys. Lett., 2005, 22(5): 058201
[13] LIU Jun-Bing, LI Neng, WANG Si-Zhen, ZHANG Jian-Hui, WANG Zhen-Lin. A Facile Synthesis of Silver-Coated Composite Particles by Swelling Surface Method[J]. Chin. Phys. Lett., 2005, 22(4): 058201
[14] LIU Jie, SUN Zhi-Wei, AA Yan. Non-Gravitational Effects with Density-Matching in Evaluating the Influence of Sedimentation on Colloidal Coagulation[J]. Chin. Phys. Lett., 2005, 22(12): 058201
[15] LI Wei-Hua, MA Hong-Ru. Effective Depletion Potential of Colloidal Spheres[J]. Chin. Phys. Lett., 2004, 21(6): 058201
Viewed
Full text


Abstract