Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 054208    DOI: 10.1088/0256-307X/28/5/054208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range
FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
FANG Yi-Jiao, CHEN Zhuo, WANG Zhen-Lin 2011 Chin. Phys. Lett. 28 054208
Download: PDF(761KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A tapered waveguide composed of a one-dimensional periodic arrangement of dielectric material is proposed for light trapping. The equifrequency contours (EFC) of silicon-air multilayer photonic crystals within the first band-gap region are first studied. A zero-group-velocity at the first Brillouin zone boundary along the grating vector is predicted. The propagation constants and eigenfrequencies of the first-order guiding modes are numerically investigated for photonic crystal waveguide structures with a finite thickness. Different frequency components of the guiding modes are found to slow and stop at different thicknesses inside such a tapered waveguide structure. In addition, the time-evolution of a femto-second pulse propagating in the tapered waveguide is also demonstrated.
Keywords: 42.70.Qs      78.20.Ci      41.20.Jb     
Received: 07 October 2010      Published: 26 April 2011
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/054208       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/054208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Yi-Jiao
CHEN Zhuo
WANG Zhen-Lin
[1] Lukin M D and Imamoglu A 2001 Nature 413 273
[2] Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901
[3] Yanik M F, Suh W, Wang Z and Fan S 2004 Phys. Rev. Lett. 93 233903
[4] Gehrig E, van der Poel M, M ørk J and Hess O 2006 IEEE J. Quant. Electron. 42 1047
[5] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[6] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[7] Stockman M I 2004 Phys. Rev. Lett. 93 137404
[8] Karalis A, Lidorikis E, Ibanescu M, Joannopoulos J D and Soljacic M 2005 Phys. Rev. Lett. 95 063901
[9] Gan Q, Fu Z, Ding Y J and Bartoli F J 2008 Phys. Rev. Lett. 100 256803
[10] Tsakmakidis K L, Boardman A D and Hess O 2007 Nature 450 397
[11] Smolyaninova V N, Smolyaninov I I, Kildishev A V and Shalaev V M 2010 Appl. Phys. Lett. 96 211121
[12] Jiang T, Zhao J M and Feng Y J 2009 Opt. Express 17 170
[13] He J L, Jin Y, Hong Z and He S L 2008 Opt. Express 16 11077
[14] Dong J W and Wang H Z 2007 Appl. Phys. Lett. 91 111909
[15] Verslegers L, Catrysse P B, Yu Z F and Fan S H 2009 Phys. Rev. Lett. 103 033902
[16] Yariv A and Yeh P 1984 Optical Waves in Crystals: Propagation and Control of Laser Radiation (New York: John Wiley & Sons, Inc.)
[17] Shin H C and Fan S H 2006 Phys. Rev. Lett. 96 073907
[18] Wangberg R, Elser J, Nariminov E E and Podolskiy V A 2006 J. Opt. Soc. Am. B 23 498
[19] Ye Y Q, Jin Y and He S L 2009 Opt. Express 17 4348
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 054208
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 054208
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 054208
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 054208
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 054208
[6] TIAN Lu,ZHAO Kun,**,ZHOU Qing-Li,SHI Yu-Lei,ZHANG Cun-Lin. Quantitative Analysis for Monitoring Formulation of Lubricating Oil Using Terahertz Time-Domain Transmission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(4): 054208
[7] M. R. Shah**,A. K. M. Akther Hossain. Influence of Lanthanum on the Microstructural and Dielectric Properties of Polycrystalline Ba(Ti0.5Fe0.5)O3[J]. Chin. Phys. Lett., 2012, 29(4): 054208
[8] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 054208
[9] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 054208
[10] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 054208
[11] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 054208
[12] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 054208
[13] A. Ozturk, R. Suleymanli, B. Aktas, A. Teber. Effect of Thin Metallic Layers on the Refractive Index of a Multilayer System[J]. Chin. Phys. Lett., 2012, 29(2): 054208
[14] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 054208
[15] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 054208
Viewed
Full text


Abstract