Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050310    DOI: 10.1088/0256-307X/28/5/050310
GENERAL |
Quantum Nonlocally Correlated Observables for Non-Gaussian States
LI Hong-Rong1**, LI Fu-Li1, ZHU Shi-Yao2
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049
2Department of Physics, Hong Kong Baptist University, Hong Kong
Cite this article:   
LI Hong-Rong, LI Fu-Li, ZHU Shi-Yao 2011 Chin. Phys. Lett. 28 050310
Download: PDF(598KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum nonlocally correlated observables of the squeezed Bell-like states are investigated. We find that the higher amount of the entanglement does not always mean the stronger correlation of positions and momentums in the non-Gaussian states such as the photon-added states and the squeezed number states. Quantum nonlocal correlations of the amplitude-squared operators signal the entanglement existence of all the squeezed Bell-like states.
Keywords: 03.67.Hk      03.67.Mn      42.50.Dv     
Received: 15 November 2010      Published: 26 April 2011
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050310       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050310
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hong-Rong
LI Fu-Li
ZHU Shi-Yao
[1] Braunstein S L et al 2005 Rev. Mod. Phys. 77 513
[2] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[3] Braunstein S L et al 1998 Phys. Rev. Lett. 80 869 Furusawa A et al 1998 Science 282 706
[4] Milburn G J et al 1999 Phys. Rev. A 60 937
[5] Einstein A et al 1935 Phys. Rev. 47 777
[6] Zavatta A et al 2004 Science 306 660
[7] Ourjoumtsev A et al 2007 Phys. Rev. Lett. 98 030502
[8] Li H R et al 2007 Phys. Rev. A 75 062318
[9] Dell'Anno F et al 2007 Phys. Rev. A 76 022301
[10] Duan L M et al 2000 Phys. Rev. Lett. 84 2722
[11] Giedke G et al 2003 Phys. Rev. Lett. 91 107901
[12] Agarwal G S et al 2005 New J. Phys. 7 211
[13] Hillery M et al 2006 Phys. Rev. Lett. 96 050503
[14] Shchukin E et al 2005 Phys. Rev. Lett. 95 230502
[15] Giovannetti V et al 2003 Phys. Rev. A 67 022320
[16] Bennett C H et al 1996 Phys. Rev. Lett. 76 722
[17] Bennett C H et al 1996 Phys. Rev. A 54 3824
[18] Vedral V et al 1997 Phys. Rev. Lett. 78 2275
[19] Hillery M 1989 Phys. Rev. A 40 3147
[20] Hillery M 1987 Phys. Rev. A 36 3796
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 050310
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 050310
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 050310
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 050310
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 050310
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 050310
[7] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 050310
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 050310
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 050310
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 050310
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 050310
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 050310
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 050310
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 050310
[15] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 050310
Viewed
Full text


Abstract