Chin. Phys. Lett.  2011, Vol. 28 Issue (4): 048102    DOI: 10.1088/0256-307X/28/4/048102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition
WEI Meng1**, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, PAN Xu1, HOU Qi-Feng1, WANG Zhan-Guo2
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling et al  2011 Chin. Phys. Lett. 28 048102
Download: PDF(580KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A 2 µm high quality crack-free GaN film was successfully grown on 2-inch Si(111) substrates by metal organic chemical vapor deposition with a high temperature AlN/graded-AlGaN multibuffer and an AlN/GaN superlattice interlayer. It is found that the structures, as well as the thicknesses of the multibuffer and interlayer, are crucial for the growth of a crack-free GaN epilayer. The GaN(0002) XRD FWHM of the crack-free sample is 479.8 arcsec, indicating good crystal quality. An AlGaN/GaN heterostructure was grown and tested by Van der Pauw Hall measurement. The electron mobility of two-dimensional electron gas increases from 1928 cm2/Vs to 12277 cm2/Vs when the test-temperature decreases from room temperature to liquid nitrogen temperature. The electron mobility is comparable to that of AlGaN/GaN heterostructures grown on sapphire, and the largest value is obtained for an AlGaN/GaN/Si(111) heterostructure grown by metal organic chemical vapor deposition.
Keywords: 81.15.Gh      73.40.Mr      73.61.Ey      85.30.Tv     
Received: 16 November 2010      Published: 29 March 2011
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.40.Mr (Semiconductor-electrolyte contacts)  
  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/4/048102       OR      https://cpl.iphy.ac.cn/Y2011/V28/I4/048102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Meng
WANG Xiao-Liang
XIAO Hong-Ling
WANG Cui-Mei
PAN Xu
HOU Qi-Feng
WANG Zhan-Guo
[1] Nikishin S A et al 1999 Appl. Phys. Lett. 75 2073
[2] Strite S et al 1992 J. Vac. Sci. Technol. B 10 1237
[3] Dadgar A et al 2002 Appl. Phys. Lett. 80 3670
[4] Wang J F et al 2006 Appl. Phys. Lett. 89 152105
[5] Liu W et al 2007 Appl. Phys. Lett. 90 011914
[6] Feltin E et al 2001 Appl. Phys. Lett. 79 3230
[7] Liu Z et al 2007 Chin. Phys. 16 1467
[8] Marchand H et al 2001 J. Appl. Phys. 89 7846
[9] Able A et al 2005 J. Cryst. Growth 276 415
[10] Cheng K et al 2006 J. Electron. Mater. 35 592
[11] Kim M et al 2001 Appl. Phys. Lett. 79 2713
[12] Arslan E et al 2008 J. Phys. D: Appl. Phys. 41 155317
[13] Cheng K et al 2007 J. Cryst. Growth 298 822
[14] Shu C K et al 1998 Appl. Phys. Lett. 73 641
[15] Zang K Y et al 2003 Phys. Status Solidi C 7 2067
[16] S Raghavan et al 2005 J. Appl. Phys. 98 023514
[17] Sugahara T et al 2004 Jpn. J. Appl. Phys. 43 1595
[18] Bougrioua Z et al 2003 Phys. Status Solidi A 195 93
[19] Wang C M et al 2006 Phys. Status Solidi C 3 486
[20] Miyoshia M, Egawab T and Ishikawa H 2005 J. Vac. Sci. Technol. B 23 1527
[21] Arulkumaran S et al 2003 J. Vac. Sci. Technol. B 21 888
[22] Heying B et al 1999 J. Appl. Phys. 85 6470
[23] Ishikawa H et al 1999 Jpn. J. Appl. Phys. 38 492
[24] Acord J D et al 2004 J. Cryst. Growth 272 65
[25] Wei M et al 2011 J. Mater. Sci: Mater. Electron. (accepted)
[26] Weng X et al 2007 J. Electron. Mater. 36 346
[27] Feltin E et al 2001 Appl. Phys. Lett. 79 3230
[28] Arulkumaran S et al 2005 Appl. Phys. Lett. 86 123503
[29] Zhang M L, Wang X L, Xiao H L and Wang C M 2009 Superlattices Microstructures 45 54
Related articles from Frontiers Journals
[1] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 048102
[2] XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang**. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors[J]. Chin. Phys. Lett., 2012, 29(4): 048102
[3] LU Li,CHANG Hu-Dong,SUN Bing,WANG Hong,XUE Bai-Qing,ZHAO Wei,LIU Hong-Gang**. Solid Phase Reactions of Ni-GaAs Alloys for High Mobility III–V MOSFET Applications[J]. Chin. Phys. Lett., 2012, 29(4): 048102
[4] ZHANG Chao, SONG Zhi-Tang, WU Guan-Ping, LIU Bo, WANG Lian-Hong, XU Jia, LIU Yan, WANG Lei, YANG Zuo-Ya, FENG Song-Lin. An Integrated Phase Change Memory Cell with Dual Trench Epitaxial Diode Selector[J]. Chin. Phys. Lett., 2012, 29(3): 048102
[5] SANG Ling, LIU Jian-Ming, XU Xiao-Qing, WANG Jun, ZHAO Gui-Juan, LIU Chang-Bo, GU Cheng-Yan, LIU Gui-Peng, WEI Hong-Yuan, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 048102
[6] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 048102
[7] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 048102
[8] SANG Ling**, WANG Jun**, SHI Kai, WEI Hong-Yuan, JIAO Chun-Mei, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. The Growth of Semi-Polar ZnO (10[J]. Chin. Phys. Lett., 2012, 29(1): 048102
[9] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 048102
[10] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 048102
[11] DAI Ke-Hui, **, WANG Lian-Shan**, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, . Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(9): 048102
[12] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 048102
[13] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 048102
[14] CHENG Zai-Jun, SAN Hai-Sheng**, CHEN Xu-Yuan, **, LIU Bo, FENG Zhi-Hong . Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery[J]. Chin. Phys. Lett., 2011, 28(7): 048102
[15] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 048102
Viewed
Full text


Abstract