Chin. Phys. Lett.  2011, Vol. 28 Issue (4): 046103    DOI: 10.1088/0256-307X/28/4/046103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes
WU Shan-Shan, WANG Lei**, YANG De-Ren
State Key Laboratory of Silicon Materials and the Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
WU Shan-Shan, WANG Lei, YANG De-Ren 2011 Chin. Phys. Lett. 28 046103
Download: PDF(883KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively.
Keywords: 61.72.Yx      61.72.Cc     
Received: 20 January 2011      Published: 29 March 2011
PACS:  61.72.Yx (Interaction between different crystal defects; gettering effect)  
  61.72.Cc (Kinetics of defect formation and annealing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/4/046103       OR      https://cpl.iphy.ac.cn/Y2011/V28/I4/046103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Shan-Shan
WANG Lei
YANG De-Ren
[1] Rinio M, Ballif C, Buonassisi T and Borchert D 2004 Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition Pairs (France 7–11 June 2004) 762
[2] Rossberg M, Naumann M, Irmscher K, Juda U, Lüdge A, Michael Ghosh and Armin Müller 2005 Solid State Phenom. 108–109 8
[3] Ferrazza F 2002 Solar Energy Mater. Solar Cells 72 5
[4] Naerland T U, Arnberg L and Holt A 2009 Prog. Photovolt. 17 8
[5] Holt A, Enebakk E and Siland K A 2007 Presented at the 22th European Photovoltaic Solar Energy Conference (Milan, Italy 3–7 September 2007) 1155
[6] Wu S S, Wang L, Li X Q, Wang P, Yang D R and Da Y 2010 Cryst. Res. Technol. (submitted)
[7] Luke K L and Cheng L J 1988 J. Electrochem. Soc. 135 957
[8] Poortmans J, Vermeulen T, Nijs J and Mertens R 1995 Presented at the 25th PVSC (Washington 13–17 May 1995) 721
[9] Seibt M, Sattler A, Rudolf C, Voss O, Kveder V and Schroter W 2006 Physica Status Solidi A 203 696
[10] Narayanan S, Wenham S R and Green M A 1986 Appl. Phys. Lett. 48 873
[11] Périchaud I 2002 Solar Energy Mater. Solar Cells 72 315
[12] Martinuzzi S, Périchaud I and Warchol F 2003 Solar Energy Mater. Solar Cells 80 343
[13] Plekhanov P S, Gafiteanu R, Goesele U M and Tan T Y 1999 J. Appl. Phys. 86 (5) 2453
[14] Bentzen A and Holt A 2009 Mater. Sci. Eng. B 159–160 228
[15] Haarahiltunen A, Savin H, Yli-Koski M, Talvitie H, Asghar M I and Sinkkonen J 2009 Mater. Sci. Eng. B 159–160 248
[16] Sopori B L, Deng X, Benner J P, Rohatgi A, Sana P, Estreicher S K, Park Y K and Roberson M A 1996 Solar Energy Mater. Solar Cells 41–42 159
[17] Duerinckx F and Szlufcik J 2002 Solar Energy Mater. Solar Cells 72 (1-4) 231
[18] Dekkers H F W, Carnel L and Beaucarne G 2006 Appl. Phys. Lett. 89 013508
[19] Moeller H J, Kaden T, Scholz S and Wurzner S 2009 Appl. Phys. A 96 207
[20] Pickett M D and Buonassisi T 2008 Appl. Phys. Lett. 92 122103
[21] Kang J S and Schroder D K 1989 J. Appl. Phys. 65 2974
[22] Joshi S M, Goesele U M and Tan T Y 2001 Solar Energy Mater. Solar Cells 70 231
[23] Weber E R 1983 Appl. Phys. A 30 1
[24] Chen J, Yang D and Wang X 2004 Eur. Phys. J. Appl. Phys. 27 4
[25] Dubois S, Enjalbert N, Warchol F and Martinuzzi S 2009 Mater. Sci. Eng. B 159–160 239
Related articles from Frontiers Journals
[1] XUE Shu-Wen, ZHANG Jun, SHAO Le-Xi. Phase Evolution of Cubic ZnS Annealed in Mild Oxidizing Atmosphere[J]. Chin. Phys. Lett., 2012, 29(3): 046103
[2] LIN Li-Xia, CHEN Jia-He, WU Peng, ZENG Yu-Heng, MA Xiang-Yang, YANG De-Ren** . Denuded Zone Formation in Germanium Codoped Heavily Phosphorus-Doped Czochralski Silicon[J]. Chin. Phys. Lett., 2011, 28(3): 046103
[3] KONG Chun-Yang, QIN Guo-Ping, RUAN Hai-Bo, NAN Mao, ZHU Ren-Jiang, DAI Te-Li. Effect of Post-Annealing on Microstructural and Electrical Properties of N+ Ion-Implanted into ZnO:In Films[J]. Chin. Phys. Lett., 2008, 25(3): 046103
[4] ZHU Xin, YANG De-Ren, LI Ming, CHEN Tao, WANG Lei, QUE Duan-Lin. Minority Carrier Lifetime in As-Grown Germanium Doped Czochralski Silicon[J]. Chin. Phys. Lett., 2008, 25(2): 046103
[5] LI Ming, MA Xiang-Yang, YANG De-Ren. Kinetics of Nitrogen Indiffusion in Czochralski Silicon Annealed in Nitrogen Ambient[J]. Chin. Phys. Lett., 2008, 25(2): 046103
[6] JIANG Hui-Feng, ZHANG Qing-Chuan, CHEN Xue-Dong, FAN Zhi-Chao, CHEN Zhong-Jia, WU Xiao-Ping. Numerical Simulation of the Elastic Shrinkage Induced by Portevin--Le Chatelier Effect[J]. Chin. Phys. Lett., 2007, 24(5): 046103
[7] ZHAO Huan, XU Ying-Qiang, NI Hai-Qiao, HAN Qin, WU Rong-Han, NIU Zhi-Chuan. Enhancement of Photoluminescence Intensity of GaInNAs/GaAs Quantum Wells by Two-Step Rapid Thermal Annealing[J]. Chin. Phys. Lett., 2006, 23(9): 046103
[8] ZHU Li-Na, CHEN Xiao-Long, YANG Hui, PENG Tong-Hua, NI Dai-Qin, HU Bo-Qing. Effects of Post-Thermal Treatment on Quality of SiC Grown by PVT Method[J]. Chin. Phys. Lett., 2006, 23(8): 046103
[9] CHEN Zhi-Tao, , XU Ke, , GUO Li-Ping, YANG Zhi-Jian, , PAN Yao-Bo, , SU Yue-Yong, , ZHANG Han, , SHEN Bo, , ZHANG Guo-Yi,. Mosaic Structure Evolution in GaN Films with Annealing Time Grown by Metalorganic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2006, 23(5): 046103
[10] F. Ayad, M. Remram. Modelling of Gettering by Mechanical Damage of Metallic Impurities in Silicon[J]. Chin. Phys. Lett., 2006, 23(11): 046103
[11] CUI Can, YANG De-Ren, MA Xiang-Yang, FU Li-Ming, FAN Rui-Xin, QUE Duan-Lin. Oxygen Precipitation within Denuded Zone Founded by Rapid Thermal Processing in Czochralski Silicon Wafers[J]. Chin. Phys. Lett., 2005, 22(9): 046103
[12] WU Feng, ZHANG Shu-yuan, CHEN Zhi-wen, TAN Shun. Crystallization and Fractal Formation in Annealed Al/a-Ge Bilayer Films[J]. Chin. Phys. Lett., 1997, 14(10): 046103
[13] WANG Jian-hua, YU Guang-rui, JIN Feng, LI De-jie. Partial Disordering of GaAs/AlGaAs Quantum Well by Rapid Thermal Annealing[J]. Chin. Phys. Lett., 1996, 13(7): 046103
[14] WEI Ya-dong, LIANG Jun-wu. Dislocation Movement in Nitrogen-Doped Czochralski Silicon[J]. Chin. Phys. Lett., 1996, 13(5): 046103
Viewed
Full text


Abstract