Chin. Phys. Lett.  2011, Vol. 28 Issue (4): 040305    DOI: 10.1088/0256-307X/28/4/040305
GENERAL |
High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement
WANG Tie-Jun1,2,3, LI Tao1, DU Fang-Fang1, DENG Fu-Guo1**
1Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875
2College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
3Beijing Radiation Center, Beijing 100875
Cite this article:   
WANG Tie-Jun, LI Tao, DU Fang-Fang et al  2011 Chin. Phys. Lett. 28 040305
Download: PDF(416KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication (QSDC) protocol based on this quantum hyperdense coding protocol. This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system. Compared with the QSDC protocol based on superdense coding with d-dimensional systems, this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.
Keywords: 03.67.Hk      03.67.Dd     
Received: 25 February 2011      Published: 29 March 2011
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/4/040305       OR      https://cpl.iphy.ac.cn/Y2011/V28/I4/040305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Tie-Jun
LI Tao
DU Fang-Fang
DENG Fu-Guo
[1] Bennett C H and Brassad G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p 175
[2] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H et al 1992 Phys. Rev. Lett. 68 557
[5] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[6] Li X H et al 2008 Phys. Rev. A 78 022321
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Deng F G et al 2003 Phys. Rev. A 68 042317
[9] Beige A et al 2002 Acta Phys Pol A 101 357
[10] Long G L et al 2007 Front. Phys. Chin. 2 251
[11] Bostrom K et al 2002 Phys. Rev. Lett. 89 187902
[12] Wójcik A 2003 Phys. Rev. Lett. 90 157901
[13] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[14] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
[15] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[16] Deng F G et al 2006 Commun. Theor. Phys. 46 443
[17] Wang C et al 2005 Phys. Rev. A 71 044305
[18] Wang C et al 2005 Opt. Commun. 253 15
[19] Li X H et al 2007 Chin. Phys. 16 2149
[20] Yan F L, Zhang X 2004 Euro. Phys. J. B 41 75
[21] Gao T, Yan F L and Wang Z X 2005 J. Phys. A 38 5761
[22] Gao T et al 2005 Int. J. Mod. Phys. C 16 1293
[23] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[24] Man Z X et al 2005 Chin. Phys. Lett. 22 18
[25] Zhu A D et al 2006 Phys. Rev. A 73 022338
[26] Li X H et al 2006 Phys. Rev. A 74 054302
[27] Wang J et al 2006 Phys. Lett. A 358 256
[28] Li X H et al 2006 J. Korean Phys. Soc. 49 1354
[29] Wang C et al 2006 Commun. Theor. Phys. 46 440
[30] Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
[31] Gu B et al 2009 Sci. Chin. G 52 1913
[32] Walborn S P et al 2003 Phys. Rev. A 68 042313
[33] Wei T C et al 2007 Phys. Rev . A 75 060305(R)
[34] Schuck C et al 2006 Phys. Rev. Lett. 96 190501
[35] Barreiro J T et al 2008 Nature Phys. 4 282
[36] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[37] Sheng Y B et al 2008 Phys. Rev. A 77 042308
[38] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[39] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[40] Li X H 2010 Phys. Rev. A 82 044304
[41] Sheng Y B et al 2010 Phys. Rev. A 82 032318
[42] Bennett C H et al 1992 Phys. Rev. Lett. 69 2881
[43] Liu X S et al 2002 Phys. Rev. A 65 022304
[44] Grudka A and Wójcik A 2002 Phys. Rev. A 66 014301
[45] Deng F G et al 2005 Phys. Rev. A 72 044302
[46] Cai Q Y 2006 Phys. Lett. A 351 23
[47] Inamori H, Rallan L and Vedral V 2001 J. Phys. A 34 6913
[48] Waks E et al 2002 Phys. Rev. A 65 052310
[49] Wei D X et al 2004 Chin. Sci. Bull. 49 423
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 040305
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 040305
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 040305
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 040305
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 040305
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 040305
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 040305
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 040305
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 040305
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 040305
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 040305
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 040305
[14] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 040305
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 040305
Viewed
Full text


Abstract