Chin. Phys. Lett.  2011, Vol. 28 Issue (4): 040304    DOI: 10.1088/0256-307X/28/4/040304
GENERAL |
Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues
O. Bayrak1**, A. Soylu2, I. Boztosun1
1Department of Physics, Akdeniz University, Antalya 07058, Turkey
2Department of Physics, Nigde University, Nigde 51240, Turkey
Cite this article:   
O. Bayrak, A. Soylu, I. Boztosun 2011 Chin. Phys. Lett. 28 040304
Download: PDF(401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method. When the velocity-dependent term is selected as a constant parameter ρ0, we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials. However, when the velocity−dependent term is considered as a harmonic oscillator type ρ0r2, taking the velocity−dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.
Keywords: 03.65.Fd      03.65.Ge      34.20.Cf      34.20.Gj      31.15.Md     
Received: 17 September 2010      Published: 29 March 2011
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
  34.20.Cf (Interatomic potentials and forces)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  31.15.Md  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/4/040304       OR      https://cpl.iphy.ac.cn/Y2011/V28/I4/040304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
O. Bayrak
A. Soylu
I. Boztosun
[1] Kisslinger L S 1955 Phys. Rev. 98 761
[2] Razavy M, Field G and Levinger J S 1962 Phys. Rev. 125 269
[3] Green A E S, Rio D E and Ueda T 1981 Phys. Rev. A 24 3010
[4] Serra L I and Lipparini E 1997 Europhys. Lett. 40 667
[5] Barranco M, Pi M, Gatica S M, Hernndez E S and Navarro J 1997 Phys. Rev. B 56 8997
[6] Geller M R and Kohn W 1993 Phys. Rev. Lett. 70 3103
[7] Jaghoub M I 2001 Eur. Phys. J. A 11 175
[8] Jaghoub M I 2002 Eur. Phys. J. A 13 349
[9] Jaghoub M I 2002 Eur. Phys. J. A 15 443
[10] Jaghoub M I 2006 Eur. Phys. J. A 27 99
[11] Jaghoub M I 2006 Eur. Phys. J. A 28 253
[12] Jaghoub M I 2006 Phys. Rev. A 74 032702
[13] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[14] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[15] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[16] Bayrak O and Boztosun I 2007 Int. J. Mod. Phys. C 18 1443
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 040304
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 040304
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 040304
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 040304
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 040304
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 040304
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040304
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 040304
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 040304
[10] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 040304
[11] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 040304
[12] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 040304
[13] Jamieson M. J.**, Ouerdane H., . Parameters for Cold Collisions of Lithium and Caesium Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 040304
[14] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 040304
[15] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke . Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State[J]. Chin. Phys. Lett., 2011, 28(4): 040304
Viewed
Full text


Abstract