Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 034209    DOI: 10.1088/0256-307X/28/3/034209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Improved Plane-Wave Expansion Method for Band Structure Calculation of Metal Photonic Crystal
JIANG Bin1, ZHOU Wen-Jun1, CHEN Wei1, LIU An-Jin1, ZHENG Wan-Hua1,2**
1Nano-optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
JIANG Bin, ZHOU Wen-Jun, CHEN Wei et al  2011 Chin. Phys. Lett. 28 034209
Download: PDF(645KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We combine Cartesian coordinates and polar coordinates wave number eigenvalue equations based on the plane-wave expansion (PWE) method to calculate and optimize the band structures of the two-dimensional (2D) metal photonic crystals (PhCs). Compared with the traditional PWE methods for metal PhCs, the band structures can be calculated directly in our method and no further procedures are needed to handle the folded band structures. With this method, we optimize the large gap-midgap ratio of the 2D square lattice of square metal rods and circular metal rods. The TM gap-midgap ratio of the 2D square lattice of square metal rods reaches 7.6246% with the side length L=0.71a with a being the lattice constant. The TM gap-midgap ratio of the 2D square lattice of circular metal rods reaches 16.3934% with radius R= 0.45a. Our method can be easily used in both square lattice and triangular lattice directly.
Keywords: 42.70.Qs     
Received: 11 August 2010      Published: 28 February 2011
PACS:  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/034209       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/034209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Bin
ZHOU Wen-Jun
CHEN Wei
LIU An-Jin
ZHENG Wan-Hua
[1] Painter O, Lee R K, Scherer A, Yariv A, O' Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
[2] Noda S, Chutinan A, Imada M 2000 Nature 407 608
[3] Xing M X, Zheng W H, Zhou W J, Chen W, Liu A J and Wang H L 2010 Chin. Phys. Lett. 27 024213
[4] Chutinan A and Noda S 2000 Phys. Rev. B 62 4488
[5] Ho K M, Chan C T and Soukoulis C M 1990 Phys. Rev. Lett. 65 3152
[6] Qiu M and He S L 1999 Phys. Rev. B 60 10610
[7] Li Z Y and Lin L L 2003 Phys. Rev. E 67 046607
[8] Zhang W Y, Chan C T and Sheng P 2001 Opt. Express 8 203
[9] Modinos A, Stefanou N and Yannopapas V 2005 Opt. Express 8 197
[10] Zhu Z M and Brown T 2002 Opt. Express 10 853
[11] Hsue Y C and Yang T J 2004 Solid State Commun. 129 475
[12] Shi S Y, Chen C H and Prather D W 2005 Appl. Phys. Lett. 86 043104
[13] Feng C S, Mei L M, Cai L Z, Yang X L, Wei S S and Li P 2006 J. Phys. D: Appl. Phys. 39 4316
[14] Yannopapas V, Modinos A and Stefanou N 1999 Phys. Rev. B 60 5359
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 034209
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 034209
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 034209
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 034209
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 034209
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 034209
[7] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 034209
[8] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 034209
[9] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 034209
[10] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 034209
[11] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 034209
[12] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 034209
[13] HUANG Xian-Shan, LIU Hai-Lian** . Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir[J]. Chin. Phys. Lett., 2011, 28(12): 034209
[14] DU Qiu-Jiao, LIU Jin-Song**, WANG Ke-Jia, YI Xu-Nong, YANG Hong-Wu . Dual-Band Terahertz Left-Handed Metamaterial with Fishnet Structure[J]. Chin. Phys. Lett., 2011, 28(1): 034209
[15] HE Ling-Juan, XU Xu-Ming, LIU Nian-Hua, YU Tian-Bao, FANG Li-Guang, LIAO Qing-Hua. Proposal of an Ultracompact Triplexer Using Photonic Crystal Waveguide with an Air Holes Array[J]. Chin. Phys. Lett., 2010, 27(8): 034209
Viewed
Full text


Abstract