Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124706    DOI: 10.1088/0256-307X/28/12/124706
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface
Swati Mukhopadhyay
Department of Mathematics, The University of Burdwan, Burdwan-713104, W.B., India
Cite this article:   
Swati Mukhopadhyay 2011 Chin. Phys. Lett. 28 124706
Download: PDF(409KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Boundary layer forced convective flow and heat transfer passing a moving flat surface parallel to a moving stream are presented. The power-law surface temperature of the second degree at the boundary is described. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. The numerical results are compared with the known results from the literature for some special cases of the present study to support their validity. It is found that dual solutions exist when the surface and the fluid move in opposite directions.
Keywords: 47.15.Cb      44.27.+g      44.20.+b     
Received: 28 June 2011      Published: 29 November 2011
PACS:  47.15.Cb (Laminar boundary layers)  
  44.27.+g (Forced convection)  
  44.20.+b (Boundary layer heat flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124706       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124706
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Swati Mukhopadhyay
[1] Blasius H 1908 Zeitschrift für Mathematik und Physik 56 1
[2] Pohlhausen E 1921 Z. Angew. Math. Mech 1 115
[3] Howarth L 1938 Proc. Roy. Soc. London A 164 547
[4] Abussita A M M 1994 Appl. Math. Comput. 64 73
[5] Wang L 2004 Appl. Math. Comput. 157 1
[6] Cortell R 2005 Appl. Math. Comput. 170 706
[7] Sakiadis B C 1961 AIChE J. 7 26
[8] Afzal N, Badaruddin A and Elgarvi A A 1993 Int. J. Heat Mass Transf. 36 (13) 3399
[9] Bataller R C 2008 Appl. Math. Comput. 198 333
[10] Cortell R 2008 Chin. Phys. Lett. 25 1340
[11] Ishak A 2009 Chin. Phys. Lett. 26 034701
[12] Cortell R 2007 Theor. Comput. Fluid Dyn. 21 435
[13] Siekman J 1962 Z. Flugwiss. 10 278
[14] Klemp J B and Acrivos A 1976 J. Fluid Mech. 76 363
[15] Abdulhafez T A 1985 Int. J. Heat Mass Transf. 28 1234
[16] Chappidi P R and Gunnerson F S 1989 Int. J. Heat Mass Transf. 32 1383
[17] Hussaini M Y, Lakin W D, Nachman A 1987 SIAM J. Appl. Math. 47 699
[18] Lin H T and Haung S F 1994 Int. J. Heat Mass Transf. 37 333
[19] Sparrow E M and Abraham J P 2005 Int. J. Heat Mass Transf. 48 3047
[20] Ishak A, Nazar R and Pop I 2009 Chem. Engin. J. 148 63
[21] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[22] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 024701
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 124706
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 124706
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 124706
[4] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 124706
[5] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 124706
[6] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 124706
[7] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 124706
[8] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 124706
[9] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 124706
[10] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 124706
[11] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 124706
[12] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 124706
[13] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 124706
[14] QU Chao, SONG Fu-Quan** . Flow Characteristics of Deionized Water in Microtubes Absorbing Fluoro-Alkyl Silanes[J]. Chin. Phys. Lett., 2011, 28(10): 124706
[15] H. Saleh, I. Hashim. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels[J]. Chin. Phys. Lett., 2010, 27(2): 124706
Viewed
Full text


Abstract