Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124701    DOI: 10.1088/0256-307X/28/12/124701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
In-depth Study on Cylinder Wake Controlled by Lorentz Force
ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua
Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094
Cite this article:   
ZHANG Hui, FAN Bao-Chun, CHEN Zhi-Hua 2011 Chin. Phys. Lett. 28 124701
Download: PDF(460KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed. The effects of Lorentz force are found to be composed of two parts, one is its direct action on the cylinder (the wall Lorentz force) and the other is applied to the fluid (called the field Lorentz force) near the cylinder surface. Our results show that the wall Lorentz force can generate thrust and reduce the drag; the field Lorentz force increases the drag. However, the cylinder drag is dominated by the wall Lorentz force. In addition, the field Lorentz force above the upper surface decreases the lift, while the upper wall Lorentz force increases it. The total lift is dominated by the upper wall Lorentz force.
Keywords: 47.15.Cb      47.85.L-     
Received: 17 May 2011      Published: 29 November 2011
PACS:  47.15.Cb (Laminar boundary layers)  
  47.85.L- (Flow control)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hui
FAN Bao-Chun
CHEN Zhi-Hua
[1] Henoch C and State J 1995 Phys. Fluids 7 1371
[2] Krishnendu B and Layek G C 2011 Chin. Phys. Lett. 28 084705
[3] Hayat T, Mustafa M and Obaidat S 2011 Chin. Phys. Lett. 28 074702
[4] Breuer K S, Park J and Henoch C 2004 Phys. Fluids 16 897
[5] Berger T, Kim J and Lee C et al 2000 Phys. Fluids 12 631
[6] Mutschke G, Gerbeth G and Albrecht T et al 2006 Eur. J. Mech. B: Fluids 25 137
[7] Braun E M, Lu F K and Wilson D R 2009 Prog. Aerospace Sci. 45 30
[8] Crawford C H and Karniadakis G E 1995 AIAA 952185
[9] Weier T, Gerbeth G and Mutschke G et al 1998 Exp. Therm. Fluid Sci. 16 84
[10] Kim S and Lee C M 2001 Fluid Dyn. Res. 29 47
[11] Posdziech O and Grundmann R 2001 Eur. J. Mech. B: Fluids 20 255
[12] Zhang H, Fan B C and Chen Z H 2010 Eur. J. Mech. B: Fluids 29 53
[13] Zhang H, Fan B C and Chen Z H 2010 Computers & Fluids 39 1261
[14] Chen Z H, Fan B C and AUBRY N et al 2006 Chin. Phys. Lett. 23 154
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 124701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 124701
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 124701
[4] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 124701
[5] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 124701
[6] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 124701
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 124701
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 124701
[9] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 124701
[10] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 124701
[11] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 124701
[12] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 124701
[13] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 124701
[14] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 124701
[15] QU Chao, SONG Fu-Quan** . Flow Characteristics of Deionized Water in Microtubes Absorbing Fluoro-Alkyl Silanes[J]. Chin. Phys. Lett., 2011, 28(10): 124701
Viewed
Full text


Abstract