Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 017802    DOI: 10.1088/0256-307X/28/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Chemical Quenching of Positronium in CuO/Al2O3 Catalysts
ZHANG Hong-Jun, LIU Zhe-Wen, CHEN Zhi-Quan**, WANG Shao-Jie**
Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
ZHANG Hong-Jun, LIU Zhe-Wen, CHEN Zhi-Quan et al  2011 Chin. Phys. Lett. 28 017802
Download: PDF(648KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract CuO/Al2O3 catalysts were prepared by mixing CuO and γ−Al2O3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho−positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ4 and its intensity I4 show significant decrease, which indicates quenching effect of o−Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decrease gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ4 (14) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83±0.05)×107 s−1.
Keywords: 78.70.Bj      82.30.Gg      36.10.Dr     
Received: 24 May 2010      Published: 23 December 2010
PACS:  78.70.Bj (Positron annihilation)  
  82.30.Gg (Positronium chemistry)  
  36.10.Dr (Positronium)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/017802       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/017802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hong-Jun
LIU Zhe-Wen
CHEN Zhi-Quan
WANG Shao-Jie
[1] De Diego L F, Gayan P, Garcia-Labiano F, Celaya J, Abad A and Adanez J 2005 Energy and Fuel 19 1850
[2] Chi Y and Chuang S S C 2000 J. Catal. 190 75
[3] Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S and Tsuruya S 2001 J. Mol. Catal. A 176 141
[4] Luo M F, Fang P, He M and Xie Y L 2005 J. Mol. Catal. A 239 243
[5] Yu J and Savage P E 2000 Appl. Catal. B 28 275
[6] Laperdrix E, Costentin G, Saur O, Lavalley J C, Nedez C, Savin-Poncet S and Nougayrede J 2000 J. Catal. 189 63
[7] Trueba M and Trasatti S P 2005 Eur. J. Inorg. Chem. 17 3393
[8] Jean Y C, Mallon P E and Schrader D M 2003 Principles and Application of Positron and Positronium Chemistry (Singapore: World Scientific) ISBN:981-238-144-9
[9] Tao S J 1972 J. Chem. Phys. 56 5499
[10] Eldrup M, Lightbody D and Sherwood J N 1981 Chem. Phys. 63 51
[11] Ito K, Nakanishi H and Ujihira Y 1999 J. Phys. Chem. B 103 4555
[12] Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M and Luo X H 2008 Acta Phys. Sin. 57 7333 (in Chinese)
[13] Jean Y C, Rhee Y, Lou Y, Yen H L, Cao H, Cheong K and Gu Y 1996 Phys. Rev. B 54 1785
[14] Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B and Lynn K G 1996 Phys. Rev. Lett. 77 2097
[15] Lahtinen J and Hautojarvi P 1997 J. Phys. Chem. B 101 1609
[16] Kirkegaard P, Pederson N J and Eldrup M 1989 Risφ National Laboratory (Roskilde, Denmark)
[17] Saito H and Hyodo T 2003 Phys. Rev. Lett. 90 193401
[18] Shek C H, Gu T S, Lin G M and Lai J K L 1998 Appl. Phys. A 66 413
[19] Wang D, Chen Z Q, Wang D D, Qi N, Gong J, Cao C Y and Tang Z 2010 J. Appl. Phys. 107 023524
[20] Paulin R and Ambrosino G 1968 J. Phys. (France) 29 263
[21] Zhang H J, Chen Z Q, Wang S J, Kawasuso A and Morishita N 2010 Phys. Rev. B 82 035439
[22] Saito H and Hyodo T 1999 Phys. Rev. B 60 11070
[23] Hyodo T, Nakayama T, Saito H, Saito F and Wada K 2009 Phys. Status Solidi C 6 2497
[24] Dlubek G, Fretwell H M and Alam M A 2000 Macromolecules 33 187
[25] Chen Z Q, Maekawa M, Yamamoto S, Kawasuso A, Yuan X L, Sekiguchi T, Suzuki R and Ohdaira T 2004 Phys. Rev. B 69 035210
[26] Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R and Ohdaira T 2005 Phys. Rev. B 71 115213
Related articles from Frontiers Journals
[1] LI Yue,DENG Ai-Hong,**,ZHOU Yu-Lu,ZHOU Bing,WANG Kang,HOU Qing,SHI Li-Qun,QIN Xiu-Bo,WANG Bao-Yi. Helium-Related Defect Evolution in Titanium Films by Slow Positron Beam Analysis[J]. Chin. Phys. Lett., 2012, 29(4): 017802
[2] ZHANG Li-Ran, DENG Ai-Hong, **, YANG Dong-Xu, ZHOU Yu-Lu, HOU Qing, SHI Li-Qun, ZHONG Yu-Rong, WANG Bao-Yi . Bias Effects on the Growth of Helium-Containing Titanium Films[J]. Chin. Phys. Lett., 2011, 28(7): 017802
[3] HAO Xiao-Peng, ZHOU Chun-Lan, WANG Bao-Yi, WEI Long. Defects in Si-Rich SiO2 Films Prepared by Radio-Frequency Magnetron Co-sputtering Using Variable Energy Positron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2009, 26(4): 017802
[4] HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment[J]. Chin. Phys. Lett., 2008, 25(3): 017802
[5] PENG Cheng-Xiao, WENG Hui-Min, ZHANG Yang, MA Xing-Ping, YE Bang-Jiao. Influence of Dopants in ZnO Films on Defects[J]. Chin. Phys. Lett., 2008, 25(12): 017802
[6] LIU Chao-Zhuo, ZHOU Zhu-Ying, SHI Li-Qun, WANG Bao-Yi, HAOXiao-Peng, ZHAO Guo-Qing. Annealing Behaviour of Helium Bubbles in Titanium Films by Thermal Desorption Spectroscopy and Positron Beam Analysis[J]. Chin. Phys. Lett., 2007, 24(8): 017802
[7] HUANG Chang-Hong, MA Li, CHEN Zhi-Quan, WANG Zhu, WANG Xiao-Wei, ZHANG Hong-Yan. An Experimental Study of Mg Aggregation in AA5754 Alloys byPositron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2007, 24(2): 017802
[8] CHEN Zhi-Quan, M. Maekawa, A. Kawasuso. Energy Variable Slow Positron Beam Study of Li+-Implantation-Induced Defects in ZnO[J]. Chin. Phys. Lett., 2006, 23(3): 017802
[9] PENG Cheng-Xiao, WENG Hui-Min, YANG Xiao-Jie, YE Bang-Jiao, CHENG Bin, ZHOU Xian-Yi, HAN Rong-Dian. Dependence of Intrinsic Defects in ZnO Films on Oxygen Fraction Studied by Positron Annihilation[J]. Chin. Phys. Lett., 2006, 23(2): 017802
[10] HU Yi-Fan, SUN Jia-Ning, D. W. Gidley. Nanoporous Structure in Low-Dielectric Films with Positronium Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(6): 017802
[11] HU Yi-Fan, C. D. Beling, S. Fung. Variable Energy Positron Annihilation Spectroscopy of GaN Grown on Sapphire Substrates with MOCVD[J]. Chin. Phys. Lett., 2005, 22(5): 017802
[12] HU Yi-Fan, SUN Jia-Ning, Gidley D.W.. Probing Cu Diffusion Barrier Layers on Porous Low-Dielectric-Constant Films by Posireonium Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(11): 017802
[13] XIE Wen-Fang. Second Bound State of Biexcitons in Quantum Dots[J]. Chin. Phys. Lett., 2003, 20(1): 017802
[14] XU Yong-Jun, FAN Zhi-Guo, LUO Qi, WANG Rong, ZHU Jia-Zheng, T. Iwata, T. Minamisono, K. Matsuta, M. Fukuda, M. Mihara, ZHU Sheng-Yun. Void Evolution in α-Al2O3 Irradiated by En ≥1 MeV Neutrons of 3 x 1020cm-2[J]. Chin. Phys. Lett., 2001, 18(6): 017802
[15] MAO Wei-Dong, WANG Shao-Jie, WANG Zhu, SUN Nie-Feng, SUN Tong-Nian, ZHAO You-Wen. Identification of Defects in Undoped Semi-insulating InP by Positron Lifetime[J]. Chin. Phys. Lett., 2001, 18(4): 017802
Viewed
Full text


Abstract