Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 014702    DOI: 10.1088/0256-307X/28/1/014702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Properties of the Collision Efficiency of Nanoparticles in Brownian Coagulation
WANG Yu-Ming1, LIN Jian-Zhong1,2**, CHEN Zhong-Li2
1Institute of Fluid Mechanics, China Jiliang University, Hangzhou 310018
2Department of Mechanics, Zhejiang University, Hangzhou 310027
Cite this article:   
WANG Yu-Ming, LIN Jian-Zhong, CHEN Zhong-Li 2011 Chin. Phys. Lett. 28 014702
Download: PDF(538KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The collision efficiency of nanoparticles with diameters from 100 nm to 750 nm in the Brownian coagulation is studied by building and solving numerically the equations of particle collision in the presence of the van der Waals force, the elastic deformation force, the Stokes resistance, the lubrication force and the electrostatic force. The results show that the collision efficiency decreases overall with the increasing particle diameter. It is found that there exists an abrupt increase in the collision efficiency when the particle diameter equals 550 nm. Finally a new expression for the collision efficiency is presented.
Keywords: 47.61.Jd      47.55.df     
Received: 02 August 2010      Published: 23 December 2010
PACS:  47.61.Jd (Multiphase flows)  
  47.55.df (Breakup and coalescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/014702       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/014702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yu-Ming
LIN Jian-Zhong
CHEN Zhong-Li
[1] Yu M Z et al 2008 Chem. Engin. Sci. 63 2317
[2] Yu M Z, Lin J Z et al 2008 Powder Technol. 181 9
[3] Lin J Z, Lin P F and Chen H J 2009 Phys. fluids 21 1
[4] Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y and Lee S C 2007 Int. J. Nonlin. Sci. Numer. Simulat. 8 45
[5] Russel W B, Saville D A and Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University)
[6] Han M Y et al 1997 Water Sci. Technol. 36 69
[7] Han M and Lee H 2002 Colloids Surf. A Physicochem. Engin. Aspects 202 23
[8] Vanni M and Baldi G 2002 Adv. Colloid Interface Sci. 97 151
[9] Chin C J, Lu S C and Yiacoumi S 2004 Separation Sci. Technol. 39 2839
[10] Olsen A, Franks G et al 2006 J. Chem. Phys. 125 184906
[11] Chun J, Koch D L 2006 J. Aerosol Sci. 37 471
[12] Feng Y, Lin J Z 2008 Chin. Phys. B 17 4547
[13] Israelachvili J 1992 Intermolecular and Surface Forces (New York: Academic)
[14] Cunningham E 1910 Proc. R. Soc. London A 83 357
[15] Hocking L M 1973 J. Engin. Math. 7 207
[16] Devir S E 1967 J. Colloid Interface Sci. 21 80
Related articles from Frontiers Journals
[1] LIU Xiao-Bo, ZHANG Jian-Run, LI Pu, LE Van-Quynh. Energy Measurement of Bubble Bursting Based on Vibration Signals[J]. Chin. Phys. Lett., 2012, 29(6): 014702
[2] LIN Jian-Zhong,**,CHEN Zhong-Li. Effect of Coagulation and Diffusion on Nanoparticle Distribution in a Fully Developed Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2012, 29(5): 014702
[3] YU Rong-Ze, LEI Qun, YANG Zheng-Ming, BIAN Ya-Nan. Nonlinear Flow Numerical Simulation of an Ultra-Low Permeability Reservoir[J]. Chin. Phys. Lett., 2010, 27(7): 014702
[4] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 014702
[5] XU Jing-Yu, WANG Mi, WU Ying-Xiang, H. I. SCHLABERG, ZHENG Zhi-Chu, R. A. WILLIAMS. An Experimental Study of In-Situ Phase Fraction in Jet Pump Using Electrical Resistance Tomography Technique[J]. Chin. Phys. Lett., 2007, 24(2): 014702
Viewed
Full text


Abstract