Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 088502    DOI: 10.1088/0256-307X/27/8/088502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection

DONG Hui1,2,3, ZHANG Yi2, KRAUSE Hans-Joachim2, XIE Xiao-Ming1

1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2Institute of Bio- and Nanosystems, Forschungszentrum Jülich, D-52425 Jülich, Germany 3Graduate University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
DONG Hui, ZHANG Yi, KRAUSE Hans-Joachim et al  2010 Chin. Phys. Lett. 27 088502
Download: PDF(522KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, superconducting quantum interference devices (SQUIDs) have been demonstrated to be useful in the low field nuclear magnetic resonance (NMR) measurements. The high temperature superconducting (HTS) SQUID used in our experiments has a frequency-independent sensitivity of 40-50 fT/Hz1/2. When a liquid nitrogen cooled LC circuit is employed to form a tuned circuit with the SQUID, the sensitivity of the system can be further enhanced. The LC circuit consists of a capacitor and a coil made of copper wire or HTS tape, which is inductively coupled to the SQUID. However, the homogeneity of the measurement field deteriorates because of the HTS tape coil in the proximity of the sample. In contrast, the thin film SQUID with a washer area of 1 cm2 has no effect on the NMR signal. Therefore, the impairment of the measurement field homogeneity in the case of different superconducting elements nearby is discussed by examining the free induction decay signals at 9 kHz. It is found that a square superconducting film with an area of 1 cm2 may compensate for the inhomogeneity of the measurement field after the adjustment of its position.

Keywords: 85.25.Dq      82.56.-b     
Received: 07 June 2010      Published: 28 July 2010
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  82.56.-b (Nuclear magnetic resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/088502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/088502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Hui
ZHANG Yi
KRAUSE Hans-Joachim
XIE Xiao-Ming
[1] Packard M E and Varian R 1954 Phys. Rev. 93 941
[2] Clarke J, Lee A T, Mück M and Richards P L 2006 The SQUID Handbook ed Clarke J and Braginski A I (Weinheim: Wiley-VCH) vol I$\!$I and references therein
[3] Bernarding J, Buntkowsky G, Macholl S, Hartwig S, Burghoff M and Trahms L 2006 J. Am. Chem. Soc. 128 714
[4] Qiu L, Zhang Y, Krause H -J, Braginski A I, Burghoff M and Trahms L 2007 Appl. Phys. Lett. 91 072505
[5] Qiu L, Zhang Y, Krause H -J, Braginski A I and Usoskin A 2007 Rev. Sci. Instrum. 78 054701
[6] Dong H, Zhang Y, Krause H -J, Xie X, Braginski A I and Offenhäusser A 2010 J. Conf.: Phys. Series (accepted)
[7] Zhang Y, Qiu L, Krause H -J, Dong H, Braginski A I and Offenhäusser A 2009 Physica C 469 1624
[8] Dong H, Zhang Y, Krause H -J, Xie X, Braginski A I and Offenhäusser A 2009 Supercond. Sci. Technol. 22 125022
[9] The superconducting coil was fabricated by European High Temperature Superconducors GmbH & Co. KG (EHTS)
[10] Zhang Y, Schubert J and Wolters N 2002 Physica C 372-376 282
Related articles from Frontiers Journals
[1] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 088502
[2] ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming, WANG Yong-Liang, KONG Xiang-Yan, XIE Xiao-Ming** . A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting[J]. Chin. Phys. Lett., 2011, 28(3): 088502
[3] ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan** . Manipulating Quantum State in Superconducting Dressed-State Systems[J]. Chin. Phys. Lett., 2011, 28(12): 088502
[4] Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer[J]. Chin. Phys. Lett., 2010, 27(8): 088502
[5] LIU Dang-Ting, TIAN Ye, REN Yu-Feng, YU Hong-Wei, ZHANG Li-Hua, YANGQian-Sheng, CHEN Geng-Hua. A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram[J]. Chin. Phys. Lett., 2008, 25(7): 088502
[6] ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao,. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(4): 088502
[7] MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2008, 25(2): 088502
[8] LI Bin-Bin, SHEN Hong-Lie, ZHANG Rong, XIU Xiang-Qiang, XIE Zhi. Structural and Magnetic Properties of Codoped ZnO based Diluted Magnetic Semiconductors[J]. Chin. Phys. Lett., 2007, 24(12): 088502
[9] YAO Xi-Wei, XUE Fei, PANG Wen-Min, DU Jiang-Feng, ZHOU Xian-Yi, HAN Rong-Dian,. Liquid Nuclear Magnetic Resonance Implementation of Quantum Computation in Subspace[J]. Chin. Phys. Lett., 2006, 23(8): 088502
[10] LI Zhuo, ZHU Xue-Min, ZHANG Li-Hua, HUANG Xu-Guang, REN Yu-Feng, CHEN Geng-Hua, YANG Qian-Sheng, FENG Ji. An Economical Magnetocardiogram System Based on High-Tc SQUIDs[J]. Chin. Phys. Lett., 2006, 23(8): 088502
[11] ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED[J]. Chin. Phys. Lett., 2006, 23(12): 088502
[12] QIN Zhi-Jie, HU Dong-Sheng, XIONG Shi-Jie. Effects of Induced Flux on Andreev Levels in a Quantum Point Contact Embedded in Superconducting Ring[J]. Chin. Phys. Lett., 2004, 21(5): 088502
[13] PAN Hai-Zhong, KUANG Le-Man. Thermal Entanglement in Superconducting Quantum-Interference-Device Qubits Coupled to Cavity Field[J]. Chin. Phys. Lett., 2004, 21(3): 088502
[14] XUE Fei, DU Jiang-Feng, ZHOU Xian-Yi, HAN Rong-Dian, WU Ji-Hui. Experimentally Obtaining the Likeness of Two Unknown Qubits on a Nuclear-Magnetic-Resonance Quantum Information Processor[J]. Chin. Phys. Lett., 2003, 20(10): 088502
[15] XUE Fei, DU Jiang-Feng, SHI Ming-Jun, ZHOU Xian-Yi, HAN Rong-Dian, WU Ji-Hui. Realization of the Fredkin Gate by Three Transition Pulses in a Nuclear Magnetic Resonance Quantum Information Processor[J]. Chin. Phys. Lett., 2002, 19(8): 088502
Viewed
Full text


Abstract