Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 026501    DOI: 10.1088/0256-307X/27/2/026501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Molecular Dynamics Simulation of Strontium Titanate
SEETAWAN Tosawat1, WONG-UD-DEE Gjindara1, THANACHAYANONT Chanchana2, AMORNKITBUMRUNG Vittaya3
1Thermoelectrics Research Center and Department of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, 680 Nithayo Rd., Sakon Nakhon, 47000, Thailand2National Metal and Materials Technology Center, 114 Thailand SciencePark, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani, 12120, Thailand3Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, 123 Mitrapab Rd., Khon Kaen, 40002, Thailand
Cite this article:   
SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana et al  2010 Chin. Phys. Lett. 27 026501
Download: PDF(480KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The molecular dynamics method is used to simulate the thermophysical properties of SrTiO3 thermoelectric material in the temperature range 300-2200 K. The Morse-type potential functions added to the Busing-Ida type potential for interatomic interaction are used in the simulation. The interatomic potential parameters are determined by fitting to the experimental data of lattice parameters with temperature and the data reported in literature. The linear thermal expansion coefficient, heat capacity and lattice contributions to the thermal conductivity are analyzed. The results agree with the data reported in the literature.
Keywords: 65.40.-b      31.15.Qg      47.11.Mn     
Received: 05 May 2009      Published: 08 February 2010
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  31.15.Qg  
  47.11.Mn (Molecular dynamics methods)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/026501       OR      http://cpl.iphy.ac.cn/Y2010/V27/I2/026501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SEETAWAN Tosawat
WONG-UD-DEE Gjindara
THANACHAYANONT Chanchana
AMORNKITBUMRUNG Vittaya
[1] Iwahara H, Esaka T, Uchida H, Macula N 1981 Solid State Ionics 3/4 359
[2] Iwahara H, yajima T, Hibino T, Ushida H 1993 J. Electrochem. Soc. 140 1687
[3] Kurita N, Fukatsu N, Ohashi T 1994 J. Spn. Inst. Metals 58 782
[4] Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333
[5] Gerblinger J, Meixner H 1991 Sensors Actuators 4 99
[6] Fujimoto M, Kingery W D 1985 J. Am. Ceram. Soc. 68 169
[7] Yamaoka N, Masuyama M, Fukui M 1983 Am. Ceram. Soc. Bull. 62 698
[8] Kawai M, Watanabe S, Hanada T 1991 J. Crystal Growth. 112 745
[9] Mavroides J G, kafalas J A, Kolesar D F 1976 Appl. Phys. Lett. 28 241
[10] Henrich V E 1985 Rep. Prog. Phys. 48 1481
[11] Muta H, Kurosaki K and Yamanaka S 2005 J. Alloy Compd. 392 306
[12] Matsushita E and Tanase A 1997 Solid State Ionics 97 45
[13] Sata N, Hiramoto K and Ishigame M 1996 Phys. Rev. B 54 15795
[14] Yukawa H, Nakatsuka K and Morinaga M 1999 Solid State Ionics 116 89
[15] Seetawan T, Khuangthip T, Amornkitbamrung V, Kurosaki K, Adachi J., Katayama M, Charoenphakdee A and Yamanaka S 2008 Master. Rec. Soc. Symp. Proc. (USA: Materials Research Society) vol 1043 p 1043-T09-09
[16] Seetawan T, Vora-ud A and Amornkitbamrung V 2008 Siam Physics Congress (Khao Yai, Nakhon Ratchasima, Thailand 20--22 March 2008) A-9
[17] Zwanzig R 1965 Ann. Rev. Phys. Chem. 16 67
[18] Zhang Q Y, Jiang S W and Li Y R 2006 J. Comput. Aid. Mol. Des. 13 213
[19] de Ligny D and Richet P 1996 Phys. Rev. B 53 3013
[20] Coughlin J P and Orr R L 1953 J. Am. Chem. Soc. 75 530
[21] Ito M and Matsuda T 2009 J. Alloy Compd. 477 473
Related articles from Frontiers Journals
[1] SUN Dun-Lu**,LUO Jian-Qiao,XIAO Jing-Zhong,ZHANG Qing-Li,CHEN Jia-Kang,LIU Wen-Peng,KANG Hong-Xiang,YIN Shao-Tang. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals[J]. Chin. Phys. Lett., 2012, 29(5): 026501
[2] WAN Rong-Zheng, LI Song-Yan, FANG Hai-Ping,. Effect of Center-of-Mass Motion Removal in the Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2010, 27(8): 026501
[3] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 026501
[4] LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide[J]. Chin. Phys. Lett., 2010, 27(3): 026501
[5] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 026501
[6] WEI Lin, LI Ai-Zhen, ZHANG Yong-Gang, LI Yao-Yao. The Self-Heating Effect of Quantum Cascade Lasers Based on a pectroscopic Method[J]. Chin. Phys. Lett., 2009, 26(8): 026501
[7] ILIC D. I., SATARIC M. V., RALEVIC N.. Microtubule as a Transmission Line for Ionic Currents[J]. Chin. Phys. Lett., 2009, 26(7): 026501
[8] SUN Li-Li, JI Guang-Fu, CHEN Xiang-Rong, GOU Qing-Quan. Structural and Thermodynamic Properties of Cerium via First-Principles Plane Wave Method with a Relativistic Analytic Pseudopotential[J]. Chin. Phys. Lett., 2009, 26(1): 026501
[9] ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 026501
[10] ZHANG Wei, LI Zhe, CHEN Xiang-Rong, CAI Ling-Cang, JING Fu-Qian,. First-Principles Calculations for Thermodynamic Properties of Perovskite-Type Superconductor MgCNi3[J]. Chin. Phys. Lett., 2008, 25(7): 026501
[11] GONG Xiu-Fang, WANG Yin, NING Xi-Jing. Growth of C30 and C31 Clusters: Structures, Energetics and Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 026501
[12] LI Feng, WANG Ting-Ying, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Double-Exponentially Decayed Photoionization in CREI Effect: Numerical Experiment on 3D H2+[J]. Chin. Phys. Lett., 2008, 25(2): 026501
[13] ZENG Zhao-Yi, CHEN Xiang-Rong, , ZHU Jun, HU Cui-E,. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2008, 25(1): 026501
[14] ZHANG Chun-Fang, WEI He-Lin, WANG Jian, LIU Zu-Li. Gold Nanobelt Reorientation by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2007, 24(8): 026501
[15] OU Shu-Ching, WU Guo-Zhen. Correlation between Chaotic Dynamics and Level Spacings: the Lyapunov and Dixon Dip Approaches to Highly Excited Vibration of Deuterium Cyanide[J]. Chin. Phys. Lett., 2007, 24(7): 026501
Viewed
Full text


Abstract