Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 026401    DOI: 10.1088/0256-307X/27/2/026401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy
ZHANG Xiao-Mei, WANG Wei-Li, RUAN Ying, WEI Bing-Bo
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
ZHANG Xiao-Mei, WANG Wei-Li, RUAN Ying et al  2010 Chin. Phys. Lett. 27 026401
Download: PDF(656KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329 K (0.19TL). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.
Keywords: 64.70.Ja      81.10.Eq      81.30.Fb     
Received: 24 November 2009      Published: 08 February 2010
PACS:  64.70.Ja (Liquid-liquid transitions)  
  81.10.Eq  
  81.30.Fb (Solidification)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/026401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/026401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Mei
WANG Wei-Li
RUAN Ying
WEI Bing-Bo
[1] Tostmann H et al 2000 Phys. Rev. Lett. 84 4385
[2] Kaban I G and Hoyer W 2008 Phys. Rev. B 77 125426
[3] Tai K P et al 2006 Appl. Phys. Lett. 88 184103
[4] Banerjee R et al 2007 Appl. Phys. Lett. 90 021904
[5] Luo B C et al 2009 J. Appl. Phys. 106 053523
[6] Sicilia A et al 2009 Phys. Rev. E 80 031121
[7] Li H L and Zhao J Z 2008 Appl. Phys. Lett. 92 241902
[8] Tafa K, Puri S and Kumar D 2001 Phys. Rev. E 64 056139
[9] Yuan Y Q et al 2004 Chin. Phys. Lett. 21 709
[10] Yang G W et al 2000 J. Appl. Phys. 87 7232
[11] Qin T et al 2007 Sci. Chin. G 37 409
[12] Huang L J and Liu B X 1990 Appl. Phys. Lett. 57 1401
[13] Tanaka H et al 2005 Phys. Rev. Lett. 95 078103
[14] Thakur S et al 2009 Phys. Rev. E 80 011708
[15] Lu X Y et al 2001 Mater. Sci. Eng. A 313 198
[16] Liu J M et al 1994 Chin. Phys. Lett. 11 634
[17] Chang Y A 1979 Int. Copper Research Association 1979 498
[18] Zhou H Y and Zheng J X 1987 Acta Metall. Sin. 23 B39
[19]Miettinen J 2009 Computer Coupling of Phase Diagrams and Thermochemistry 32 500
[20] Qin H Y et al 2009 Chin. Phys. Lett. 26 118102
Related articles from Frontiers Journals
[1] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 026401
[2] LI Yang, QIU Sheng-Bao, SHAO Yang, YAO Ke-Fu** . Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2011, 28(11): 026401
[3] DING Hong-Yu, LI Yang, YAO Ke-Fu. Preparation of a Pd-Cu-Si Bulk Metallic Glass with a Diameter up to 11mm[J]. Chin. Phys. Lett., 2010, 27(12): 026401
[4] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 026401
[5] ZHANG Bao-Qing, ZHANG Xin-Yu, LI Gong, SUN Bao-Ru, FAN Chang-Zeng, ZHAN Zai-Ji, LIU Ri-Ping, WANG Wen-Kui. Effect of Yttrium Addition on Glass Forming Ability of ZrCuAlSi Alloy[J]. Chin. Phys. Lett., 2009, 26(6): 026401
[6] QIN Hai-Yan, WANG Wei-Li, WEI Bing-Bo. Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound[J]. Chin. Phys. Lett., 2009, 26(11): 026401
[7] WANG Nan. Effect of Low Diffusion Coefficient on Eutectic Instability of Al-25wt%Sm Alloy[J]. Chin. Phys. Lett., 2008, 25(11): 026401
[8] WANG Qiang, MA Ming-Zhen, JING Qin, LI Gong, QI Li, ZHANG Xin-Yu, WANG Wen-Kui, LIU Ri-Ping. Undercooling and Unidirectional Solidification of CuNi Alloy Melts[J]. Chin. Phys. Lett., 2008, 25(10): 026401
[9] LIU Jia, WANG Shu-Ying, ZHENG Cai-Ping, XIN Li-Juan, WANG Dan, SUN Min-Hua. Glass Transition Temperature of Water: from Simulations of Diffusion and Excess Entropy[J]. Chin. Phys. Lett., 2007, 24(7): 026401
[10] CHEN Qing-Jun, SHEN Jun, FAN Hong-Bo, SUN Jian-Fei, HUANG Yong-Jiang, MCCARTNEY D. G.. Glass-Forming Ability of an Iron-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion[J]. Chin. Phys. Lett., 2005, 22(7): 026401
[11] CAO Chong-De, Georg P. Gö, RLER. Direct Measurement of the Metastable Liquid Miscibility Gap in Fe--Co--Cu Ternary Alloy System[J]. Chin. Phys. Lett., 2005, 22(2): 026401
[12] PAN Xiu-Hong, HONG Yong, JIN Wei-Qing. In Situ Observation of Cell-to-Dendrite Transition[J]. Chin. Phys. Lett., 2005, 22(11): 026401
[13] TIAN Ya-Li, WU Ping, JIANG En-Yong, ANDO Teiichi. Heterogeneous Nucleation and Solidification Prediction of Sn-5wt.%Pb Droplets[J]. Chin. Phys. Lett., 2004, 21(1): 026401
[14] LIU Ri-Ping. Thermodynamic Analyses of the Solid-Liquid Interface and Growth Mode Transition in Undercooled Melts[J]. Chin. Phys. Lett., 2003, 20(9): 026401
[15] LIU Guang-Rong, BIAN Xiu-Fang, SUN Min-Hua. Experimental Studies of Liquid Viscosity in Immiscible Al-In Alloys[J]. Chin. Phys. Lett., 2003, 20(8): 026401
Viewed
Full text


Abstract