Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 126401    DOI: 10.1088/0256-307X/27/12/126401
Characterization and Magnetic Properties of Nickel Ferrite Nanoparticles Prepared by Ball Milling Technique
G. Nabiyouni1**, M. Jafari Fesharaki1, M. Mozafari2, J. Amighian2
1Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
2Department of Physics, Faculty of Science, Isfahan University, Isfahan, Iran
Cite this article:   
G. Nabiyouni, M. Jafari Fesharaki, M. Mozafari et al  2010 Chin. Phys. Lett. 27 126401
Download: PDF(676KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nickel ferrite nanoparicles with various grain sizes are synthesized using annealing treatment followed by ball milling of its bulk component materials. Commercially available nickel and iron oxide powders are first mixed, and then annealed at 1100°C in an oxygen environment furnace and for 3 h. The samples are then milled for different times in an SPEX mill. X-ray diffraction pattern indicates that in this stage the sample is single phase. The average grain size is estimated by scanning electron microscopy (SEM) and x-ray diffraction techniques. Magnetic behavior of the sample at room temperature is studied using a superconducting quantum interference device (SQUID). The Curie temperature of the powders is measured by an LCR–meter unit. The x-ray diffraction patterns clearly indicate that increasing the milling time leads to a decrease in the grain size and consequently leads to a decrease in the saturation magnetization as well as the Curie temperatures. This result is attributed to the spin-glass-like surface layer on the nanocrystalline nickel ferrite with a ferrimagnetically aligned core.
Keywords:      75.10.Nr      75.75.-c      75.20.-g     
Received: 04 May 2010      Published: 23 November 2010
PACS: (Melting of specific substances)  
  75.10.Nr (Spin-glass and other random models)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.20.-g (Diamagnetism, paramagnetism, and superparamagnetism)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
G. Nabiyouni
M. Jafari Fesharaki
M. Mozafari
J. Amighian
[1] Nathani H and Gubbala S 2004 J. Mater. Sci. Engin. B 111 95
[2] Young-Yeal Song N Mo and Patton C E 2005 J. Appl. Phys. 97 093901
[3] Lee S, Drwiega J, Mazysk D, Wu Ch and Sigmund W M 2006 J. Mater. Chem. Phys. 96 2
[4] Gabal M A and Alangari Y M 2009 J. Mater. Chem. Phys. 115 578
[5] Satyanarayana L and Madhusudan Reddy K 2003 J. Mater. Chem. Phys. 82 21
[6] Wheicheng W, Shuo L and Yiyun W 2008 J. Mater. Sci. Technol. 24 1761
[7] Cullity B D 1956 Elements of X-Ray Diffraction (New York: Addison-Wesley) chap 7 p 139
[8] Singh J, Barthwal S K and Chandra K 2005 J. Solid State Chem. 178 3183
[9] Reitz J R, Fredrick J M and Robert W Ch 1979 Foundations of Electromagnetic Theory (Cambridge: Addison-Wesley) chap 11 p 306
[10] Morrish A H 1965 The Physical Principles of Magnetism (New York: JohnWiley and Sons) chap 6 p 264
[11] Goldman A 2006 Modern Ferrites Technology (New York: Springer) chap 2 p 32
[12] Muroi M, McCormick P G and Street R 2000 J. Solid State Chem. 152 503
[13] Misra R D K, Gubbala S, Kale A 2004 J. Mater. Sci. Technol. 111 164
[14] Caizer C and Stefanescu M 2002 J. Phys. D: Appl. Phys. 35 3035
Related articles from Frontiers Journals
[1] WANG Yong-Juan **, CHENG Jie, YUE Xian-Fang . Electronic Properties of the N2C4 Cluster of DNA[J]. Chin. Phys. Lett., 2011, 28(8): 126401
[2] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 126401
[3] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 126401
[4] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 126401
[5] Murtaza Saleem**, Saadat A. Siddiqi, Shahid Atiq, M. Sabieh Anwar . Structural and Magnetic Studies of Zn0.95Co0.05O and Zn0.90Co0.05Al0.05O[J]. Chin. Phys. Lett., 2011, 28(11): 126401
[6] LIU Jun-Ming, , CHAN-WONG Lai-Wa, CHOY Chung-Loong. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass[J]. Chin. Phys. Lett., 2009, 26(8): 126401
[7] LI Yan-Rong, LIU Hai-Qing, LIU Ying, SU Shao-Kui, WANG Yun-Ping. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets[J]. Chin. Phys. Lett., 2009, 26(7): 126401
[8] R. Masrour, M. Hamedoun, A. Benyoussef, A. Hourmatallah, K. Bouslykhane, N. Benzakour. Effect of Co-Substitution on Magnetic Properties in Spinels GeNi2O4 Systems[J]. Chin. Phys. Lett., 2008, 25(11): 126401
[9] M. Hamedoun, R. Masrour, K. Bouslykhane, A. Hourmatallah, N. Benzakour, A. Filali. Zn Doping Effect on Magnetic Properties of ZnxCd1-xCr2S4 Systems by High-Temperature Series Expansions[J]. Chin. Phys. Lett., 2007, 24(7): 126401
[10] CAO Gui-Xin, ZHANG Jin-Cang, SHA Yan-Na, YAO Kai, CAO Shi-Xun, JING Chao, SHEN Xue-Chu. Reentrant Spin Glass Behaviour and CE-Type Antiferromagnetic Phase in Half Doping (La,Pr)1,2Ca1/2 MnO3 Manganites[J]. Chin. Phys. Lett., 2005, 22(3): 126401
[11] SHANG Yu-Min, CHENG Li-Min, YAO Kai-Lun. A Spin Glass Model with Vibrations of Crystal Lattices[J]. Chin. Phys. Lett., 2005, 22(1): 126401
[12] SHANG Yu-Min, YAO Kai-Lun. Translational Invariance in Phase Diagram of S=1/2, 3/2 Spin Glass Systems[J]. Chin. Phys. Lett., 2005, 22(1): 126401
[13] SHANG Yu-Min, YAO Kai-Lun. Infinite-Range Quantum Dzyaloshinskii-Moriya Spin Glass Model[J]. Chin. Phys. Lett., 2003, 20(11): 126401
[14] SHANG Yu-Min, YAO Kai-Lun. Properties of Quantum XY Spin Glass in Longitudinal Field[J]. Chin. Phys. Lett., 2001, 18(4): 126401
[15] SHANG Yu-min, YAO Kai-un,. Quantum XY Spin Glass Model with Longitudinal Ferromagnetic Coupling[J]. Chin. Phys. Lett., 1999, 16(5): 126401
Full text