Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 114302    DOI: 10.1088/0256-307X/27/11/114302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization
LUO Wen-Yu1**, SCHMIDT Henrik2
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts 02139, USA
Cite this article:   
LUO Wen-Yu, SCHMIDT Henrik 2010 Chin. Phys. Lett. 27 114302
Download: PDF(596KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Three-dimensional mode coupling around a conical seamount in an ocean waveguide is studied. It is shown that strong mode coupling occurs at the edge of a conical seamount for the incident normal modes with significant amplitudes below the top of the seamount. Therefore, mode coupling is critical for the investigation of the acoustic field around a seamount. In addition, we suggest the use of random discretization for representing smoothly varying bathymetry. For the use of uniform discretization, when the horizontal step size is greater than half of the wavelength, artificial diffraction lobes appear due to coherent backscatter. However, by using the random discretization scheme instead, such artificial diffraction lobes are diffused, resulting in a faster convergence rate.
Keywords: 43.30.Bp      43.30.Gv      43.20.Fn     
Received: 29 June 2010      Published: 22 October 2010
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Gv (Backscattering, echoes, and reverberation in water due to combinations of boundaries)  
  43.20.Fn (Scattering of acoustic waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/114302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/114302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Wen-Yu
SCHMIDT Henrik
[1] Buckingham M J 1986 J. Acoust. Soc. Am. 80 265
[2] Lee D, Botseas G, and Siegmann W L 1992 J. Acoust. Soc. Am. 91 3192
[3] Perkins J S and Baer R N 1982 J. Acoust. Soc. Am. 72 515
[4] Evans R B 2006 J. Acoust. Soc. Am. 119 161
[5] Luo W 2007 Ph.D. thesis (Cambridge: Massachusetts Institute of Technology)
[6] Luo W and Schmidt H 2009 J. Acoust. Soc. Am. 125 52
[7] Taroudakis M I 1996 J. Comput. Acoust. 4 101
[8] Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511
[9] Williams E G 1999 Fourier Acoustics (London: Academic Press)
[10] Athanassoulis G A and Belibassakis K A 1997 J. Acoust. Soc. Am. 101 3371
[11] Jensen F B 1998 J. Acoust. Soc. Am. 104 1310
[12] Jensen F B, Kuperman W A, Porter M B and Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics)
[13] Ricks D C and Schmidt H 1994 J. Acoust. Soc. Am. 95 3339
[14] Munk W H 1974 J. Acoust. Soc. Am. 55 220
Related articles from Frontiers Journals
[1] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 114302
[2] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 114302
[3] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 114302
[4] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 114302
[5] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 114302
[6] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 114302
[7] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 114302
[8] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 114302
[9] PENG Han-Shu, LI Feng-Hua. Geoacoustic Inversion Based on a Vector Hydrophone Array[J]. Chin. Phys. Lett., 2007, 24(7): 114302
[10] CUI Zhi-Wen, WANG Ke-Xie, SUN Jian-Guo, ZHU Zheng-Ya, YAO Gui-Jin, HU Heng-Shan. Numerical Simulation of Shear-Horizontal-Wave-Induced Electromagnetic Field in Borehole Surrounded by Porous Formation[J]. Chin. Phys. Lett., 2007, 24(12): 114302
[11] ZHANG Ren-He, SU Xiao-Xing, LI Feng-Hua. Improvement of Low-Frequency Acoustic Spatial Correlation by Frequency-Shift Compensation[J]. Chin. Phys. Lett., 2006, 23(7): 114302
[12] LIU Jian-Jun, LI Feng-Hua, PENG Zhao-Hui. Stochastic Inversion of Seabottom Scattering Coefficients from Shallow-Water Reverberation[J]. Chin. Phys. Lett., 2003, 20(12): 114302
[13] LI Feng-Hua, LIU Jian-Jun. Bistatic Reverberation in Shallow Water: Modeling and Data Comparison[J]. Chin. Phys. Lett., 2002, 19(8): 114302
[14] GUO Liang-Hao, GONG Zai-Xiao, Wu Li-Xin. Space and Time Coherence of Acoustic Field in Shallow-Water [J]. Chin. Phys. Lett., 2001, 18(10): 114302
Viewed
Full text


Abstract