Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 114209    DOI: 10.1088/0256-307X/27/11/114209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Giant Enhancement of Second Harmonic Generation at Photonic Band Gap Edges
MA Dong-Li, REN Ming-Liang, DOU Jun-Hong, LI Zhi-Yuan**
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190
Cite this article:   
MA Dong-Li, REN Ming-Liang, DOU Jun-Hong et al  2010 Chin. Phys. Lett. 27 114209
Download: PDF(554KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Second harmonic generation (SHG) in one-dimensional nonlinear photonic crystals made from periodically alternating ferroelectric and dielectric layers is investigated by means of the transfer matrix method. When tuned at the photonic band gap (PBG) edges, the fundamental wave and second harmonic wave slow down, and the filed enhancement takes place within the nonlinear photonic crystal. The phase mismatching can be compensated for to some extent and the second harmonic process will be enhanced. Numerical results show that the enhancement of SHG in the PBG structure can be up to four orders of magnitude compared with the traditional quasi-phase-matching structure.
Keywords: 42.65.Ky      42.70.Qs     
Received: 13 May 2010      Published: 22 October 2010
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/114209       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/114209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Dong-Li
REN Ming-Liang
DOU Jun-Hong
LI Zhi-Yuan
[1] Franken P A and Ward J F 1963 Rev. Mod. Phys. 35 23
[2] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918
[3] Miller G D et al 1997 Opt. Lett. 22 1834
[4] Zhu S N et al 1997 Phys. Rev. Lett. 78 2752
[5] Berger V 1998 Phys. Rev. Lett. 81 4136
[6] Ni P, Ma B, Wang X, Cheng B, and Zhang D 2003 Appl. Phys. Lett. 82 4230
[7] Ma B et al 2005 Appl. Phys. Lett. 87 251103
[8] Centini M et al 1999 Phys. Rev. E 60 4891
[9] Dumeige Y, Vidakovic P, Sauvage S, Sagnes I, Levenson J A, Sibilia C, Centini M, D'Aguanno G and Scalora M 2001 Appl. Phys. Lett. 78 3021
[10] D'Aguanno G, Centini M, Scalora M, Sibilia C, Dumeige Y, Vidakovic P, Levenson J A, Bloemer M J, Bowden C M, Haus J W and Bertolotti M 2001 Phys. Rev. E 64 016609
[11] Li J J, Li Z Y and Zhang D Z 2007 Phys. Rev. E 75 056606
[12] Li J J, Li Z Y, Sheng Y and Zhang D Z 2007 App. Phys. Lett. 91 022903
[13] Li J J, Li Z Y and Zhang D Z 2008 Phys. Rev. B 77 195127
[14] Ren M L and Li Z Y 2009 Opt. Express 17 14502
[15] Dmitriev V G, Gurazdyan G G and Nikogosyan D N 1997 Handbook of Nonlinear Optical Crystals (Berlin: Springer) p 125
[16] Edwards G J and Lawrence M 1984 Opt. Quantum Electron. 16 373
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 114209
[2] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 114209
[3] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 114209
[4] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 114209
[5] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 114209
[6] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 114209
[7] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 114209
[8] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 114209
[9] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 114209
[10] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 114209
[11] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 114209
[12] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 114209
[13] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 114209
[14] LI Ping-Xue**<\sup>, , ZHANG Xue-Xia, LIU Zhi, CHI Jun-Jie . Large-Mode-Area Double-Cladding Photonic Crystal Fiber Laser in the Watt Range at 980nm[J]. Chin. Phys. Lett., 2011, 28(8): 114209
[15] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 114209
Viewed
Full text


Abstract