Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 108102    DOI: 10.1088/0256-307X/27/10/108102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Nanoadhesion of a Power-Law Graded Elastic Material
CHEN Shao-Hua, CHEN Pei-Jian
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CHEN Shao-Hua, CHEN Pei-Jian 2010 Chin. Phys. Lett. 27 108102
Download: PDF(458KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E=E0 (z/c0)k (0<k<1) while Poisson's ratio ν remains a constant, where E0 is a referenced Young's modulus, k is the gradient exponent and c0 is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.
Keywords: 81.07.Lk      46.55.+d     
Received: 07 July 2010      Published: 26 September 2010
PACS:  81.07.Lk (Nanocontacts)  
  46.55.+d (Tribology and mechanical contacts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/108102       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/108102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shao-Hua
CHEN Pei-Jian
[1] Gao H, Ji B, Jager I L, Artz E and Fratzl P 2003 Proc. Natl. Acad. Sci. U.S.A. 100 5597
[2] Chen S H, Xu G and Soh A K 2010 Tribol. Lett. 37 375
[3] Gao H, Wang X, Yao H, Gorb S and Artz E 2005 Mech. Mater. 37 275
[4] Hui C Y, Glassmaker N J, Tang T and Jagota A 2004 J. R. Soc. Interface 1 35
[5] Glassmaker N J, Jagota A, Hui CY and Kim J 2004 J. R. Soc. Interface 1 23
[6] Gao H and Ji B 2003 Eng. Fract. Mech. 70 1777
[7] Ji B and Gao H 2004 J. Mech. Phys. Solids 52 1963
[8] Kumar S, Haque M A and Gao H 2009 Appl. Phys. Lett. 94 253104
[9] Persson B N J 2000 Physical Principles and Applications 2nd edn (Berlin: Springer)
[10] Persson B N J 2003 Wear 254 832
[11] Northen M T and Turner K L 2005 Nanotechnology 16 1159
[12] Giannakopoulos A E and Pallot P 2000 J. Mech. Phys. Solids 48 1597
[13] Chen S, Yan C and Soh A 2009 Int. J. Solids Struct. 46 3398
[14] Chen S and Soh A 2008 J. R. Soc. Interface 5 373
[15] Booker J R, Balaam N P and Davis E H 1985 Int. J. Num. Anal. Meth. Geomech. 9 369
[16] Gao H and Chen S 2005 ASME J. Appl. Mech. 72 732
Related articles from Frontiers Journals
[1] CHEN Jian-Song, GE Yun**, ZHANG Hui**. Torsional Vibrations of a Cantilever with Lateral Friction in a Resonance Friction Microscope[J]. Chin. Phys. Lett., 2012, 29(1): 108102
[2] CHEN Shao-Hua, PENG Zhi-Long. An Extension of the Two-Dimensional JKR Theory to the Case with a Large Contact Width[J]. Chin. Phys. Lett., 2009, 26(12): 108102
[3] CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 108102
[4] WANG Peng, YANG Hai-Jun, WANG Hua-Bin, LI Hai, WANG Xin-Yan, WANG Ying, LÜ, Jun-Hong, LI Bin, ZHANG Yi, HU Jun,. Modification of AFM Tips for Facilitating Picking-up of Nanoparticles[J]. Chin. Phys. Lett., 2008, 25(7): 108102
Viewed
Full text


Abstract