Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 017303    DOI: 10.1088/0256-307X/27/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fabrication and Characterization of C60-Based Organic Schottky Diodes
CHENG Xiao-Man1,2,3,4, HU Zi-Yang1,2,3, WU Ren-Lei1,2,3, WANG Zhong-Qiang1,2,3, YIN Shou-Gen1,2,3
1Institute of Material Physics, Tianjin University of Technology, Tianjin 3003842Key Laboratory of Display Material and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 3003843Tianjin key Laboratory of Photoelectric Materials and Device, Tianjin 3003844School of Science, Tianjin University of Technology, Tianjin 300384
Cite this article:   
CHENG Xiao-Man, HU Zi-Yang, WU Ren-Lei et al  2010 Chin. Phys. Lett. 27 017303
Download: PDF(447KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have fabricated organic Schottky barrier diodes with Cu/LiF/C60/Al andwiched construction. Cu and Al are selected as the cathode and the anode, respectively. C60 is used as the organic layer and LiF as the buffer layer inserted between the cathode and C60. After the annealing process, Schottky contact is well formed at the Al/C60 interface and Ohmic contact is formed at the (Cu/LiF)/C60 interface. The current density-voltage (J-V) measurements of the diodes present nonlinear behavior. As a result, the rectification ratio reaches 1×03. The characteristics of the diodes have been analyzed using the energy band diagram. The values of Schottky barrier height ΦB, ideality factor n and reverse saturation current density Js are extracted according to the standard thermionic emission model.
Keywords: 73.30.+y      73.40.Ei     
Received: 09 August 2009      Published: 30 December 2009
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Ei (Rectification)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/017303       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/017303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Xiao-Man
HU Zi-Yang
WU Ren-Lei
WANG Zhong-Qiang
YIN Shou-Gen

[1] Sze SM 1981 Physics of Semiconductor Devices (New York: Wiley)
[2] Tyagi M S 1991 Introduction to Semiconductor Materials and Devices (NewYork: John Wiley)
[3] G\"{uler G, G\"{ull\"{u \"{O, Karatas S, Bakkalo\u{glu \"{O F 2009 Chin. Phys. Lett. 26 067301
[4] An X, Fan C H, Huang R, Zhang X 2009 Chin. Phys. Lett. 26 087304
[5] K{\ihco\u{glu T 2008 Thin Solid Films 516 967
[6] Pal B N, Sun J, Jung B J, Choi E, Andreou A G and Katz H E 2008 Adv. Mater. 20 1023
[7] Steudel S, Myny K, Arkhipov V, Deibel C, Vusser S D, Genoe J andHeremans P 2005 Nature Mater. 4 597
[8] Ma L P, Ouyang J Y and Yang Y 2004 Appl. Phys. Lett. 84 4786
[9] Craciun N I, Wildemand J and Blom P W M 2008 Phys. Rev. Lett. 100 056601
[10] Bullejos P L, Tejada J A J, Deen M J, Marinov O and Datars W R 2008 J. Appl. Phys. 103 064504
[11] Kumar P, Jain S C, Misra A, Kamalasanan M N and Kumar V2006 J. Appl. Phys. 100 114506
[12] Baude P F, Ender D A, Haase M A, Kelley T W, Muyres D V and Theiss S Det al 2003 Appl. Phys. Lett. 82 3964
[13] Shi Y, Liu J and Yang Y 2000 J. Appl. Phys. 87 4254
[14] Cusumano P, Buttitta F, Cristofalo A D and Cali C 2003 Syn. Met. 139 657
[15] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2008 Chin. Phys. 17 1911
[16] Na J H, Kitamura M and Arakawa Y 2007 Appl. Phys. Lett. 91 193501
[17] Ma L P, Xu Q f and Y Yang 2004 Appl. Phys. Lett. 84 4908
[18] Hayashi N, Ishii H, Ouchi Y and Seki K 2002 J. Appl. Phys. 92 3784
[19] Maxwell A J, Bruhwiler P A, Aruanitis D and Hasselstrom 1998 J. Phys. Rev. B 57 7312
[20] Tung R T 1992 Phys. Rev. B 45 13509
Related articles from Frontiers Journals
[1] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 017303
[2] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 017303
[3] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 017303
[4] HAO Lan-Zhong, **, LIU Yun-Jie, ZHU Jun**, LEI Hua-Wei, LIU Ying-Ying, TANG Zheng-Yu, ZHANG Ying, ZHANG Wan-Li, LI Yan-Rong . Rectifying the Current−Voltage Characteristics of a LiNbO3 Film/GaN Heterojunction[J]. Chin. Phys. Lett., 2011, 28(10): 017303
[5] AN Xia, FAN Chun-Hui, HUANG Ru, ZHANG Xing. Schottky Barrier Height Modulation of Nickel Germanide Schottky Diodes by the Germanidation-Induced Dopant Segregation Technique[J]. Chin. Phys. Lett., 2009, 26(8): 017303
[6] G. Güler, Ö, . Güllü, S. Karatas, Ö, . F. Bakkaloglu. Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using I-V and C-V Measurements[J]. Chin. Phys. Lett., 2009, 26(6): 017303
[7] GENG Li, MAGYARI-KOPE Blanka, ZHANG Zhi-Yong, NISHI Yoshio. Fermi Level Unpinning and Schottky Barrier Modification by Ti, Sc and V Incorporation at NiSi2/Si Interface[J]. Chin. Phys. Lett., 2009, 26(3): 017303
[8] HU Zi-Yang, CHENG Xiao-Man, , WU Ren-Lei, WANG Zhong-Qiang, YIN Shou-Gen,. Performance of Organic Field Effect Transistors with Self-Improved Cu/Organic Interfaces[J]. Chin. Phys. Lett., 2009, 26(3): 017303
[9] SANG Li-Wen, QIN Zhi-Xin, CEN Long-Bin, CHEN Zhi-Zhong, YANG Zhi-Jian, SHEN Bo, ZHANG Guo-Yi. Barrier Enhancement Effect of Postannealing in Oxygen Ambient on Ni/AlGaN Schottky Contacts[J]. Chin. Phys. Lett., 2007, 24(10): 017303
[10] WANG Chun-Ming, WANG Jin-Feng, SU Wen-Bin. Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics[J]. Chin. Phys. Lett., 2006, 23(3): 017303
[11] N. Tugluoglu, S. Karadeniz, S. Acar, M. Kasap. Temperature-Dependent Barrier Characteristics of Inhomogeneous In/p-Si (100) Schottky Barrier Diodes[J]. Chin. Phys. Lett., 2004, 21(9): 017303
[12] WANG Chun-Ming, WANG Jin-Feng, CHEN Hong-Cun, SU Wen-Bin, ZANG Guo-Zhong, QI Peng. Effects of Er2O3 on Electrical Properties of the SnO2.CoO.Ta2O5 Varistor System[J]. Chin. Phys. Lett., 2004, 21(4): 017303
[13] LIU Jie, SHEN Bo, WANG Mao-Jun, ZHOU Yu-Gang, CHEN Dun-Jun, ZHANG Rong, SHI Yi, ZHENG You-Dou. Surface States in the AlxGa1-xN Barrier in AlxGa1-xN/GaN Heterostructures[J]. Chin. Phys. Lett., 2004, 21(1): 017303
[14] GU Xiao-Xiao, HUANG Da-Ming, MORKOC Hadis. Local Surface Potential of GaN Nanostructures Probed by Kelvin Force Microscopy[J]. Chin. Phys. Lett., 2003, 20(10): 017303
[15] WANG Cheng-Xin, GAO Chun-Xiao, LIU Hong-Wu, HAN Yong-Hao, LUO Ji-Feng, SHEN Cai-Xia. Preparation and Transparent Property of the n-ZnO/p-Diamond Heterostructure[J]. Chin. Phys. Lett., 2003, 20(1): 017303
Viewed
Full text


Abstract