Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 016401    DOI: 10.1088/0256-307X/27/1/016401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures
ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan
State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Yao, LUO Xian-Wu, JI Bin et al  2010 Chin. Phys. Lett. 27 016401
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.
Keywords: 64.70.Fm      47.55.Ca     
Received: 01 January 1900      Published: 30 December 2009
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/016401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/016401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yao
LUO Xian-Wu
JI Bin
LIU Shu-Hong
WU Yu-Lin
XU Hong-Yuan

[1] Brennen C E 1994 Hydrodynamics of Pumps (London:Concepts NREC and Oxford University) p 142
[2] Deshpande M et al 1997 J. Fluids. Eng. 119 420
[3] Stahl H A and Stepanoff A J 1956 J. Basic. Eng. 78 1691
[4] Holl J W et al 1975 J. Fluids. Eng. 97 507
[5] Tani N and Nagashima T 2002 $4^{\rm th$ Int.Conference on Launcher Technology (Liege, Belgium)
[6] Rapposelli E and Agostino L D 2003 $5^{\rm th$ Int.Symposium on Cavitation (Osaka, Japan)
[7] Utturkar Y, Thakur S and Shyy W 2005 43rd AIAAAerospace Sciences Meeting and Exhibit (Reno, Nevada)
[8] Hosangadi A, Ahuja V and Ungewitter R J 2007 J.Propulsion. Power. 23 1225
[9] Kubota A et al 1992 J. Fluid. Mech. 240 59
[10] ANSYS Inc 2006 ANSYS CFX-Solver Theory Guide p 178
[11] Xu J J and Jia D N 2000 Boiling Heat and Gas-liquidTwo Phase Flow (Beijing: Atomic Energy Press) p 223 (in Chinese)
[12] Yang C X et al 1999 J. Thermal. Power. Eng. 14 246
[13] Plesskt M S and Zwick S A 1954 J. Appl. Phys. 25 493
[14] Cervone A et al 2006 J. Fluids. Eng. 128 326
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 016401
[2] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 016401
[3] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 016401
[4] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 016401
[5] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 016401
[6] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 016401
Viewed
Full text


Abstract