Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 092501    DOI: 10.1088/0256-307X/26/9/092501
NUCLEAR PHYSICS |
Secondary Beam Fragments Produced by 200 and 400MeV/u 12C6+ Ions in Water
ZHAO Qiang1,2, ZHANG Feng-Shou1,2,3, WANG Zhi-Ping1,2, ZHOU Hong-Yu1,2
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 1008752Beijing Radiation Center, Beijing 1008753Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000
Cite this article:   
ZHAO Qiang, ZHANG Feng-Shou, WANG Zhi-Ping et al  2009 Chin. Phys. Lett. 26 092501
Download: PDF(486KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the GEANT4 toolkit, we study the transportation of nucleons and nuclei in tissue-like media. The fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments are considered. Livermore data is used to calculate electromagnetic interaction of primary and secondary charged particles. We validate the models using experimental data of 200MeV/u and 400MeV/u carbon ions, interacting with tissue equivalent materials of water. The model can well describe the depth-dose distributions in water and the doses measured for secondary fragments of certain charge and certain mass number. The secondary beam fragments produced by 200MeV/u and 400MeV/u 12C6+ ions in water are investigated using the model. When the primary nuclei are in water, several neutron production mechanisms are involved. The light charged particles (p, d, t, 3He and 4He) and fast neutrons contribute to the dose tail behind the Bragg peak. The 11C fragments which may be the most suitable nuclei for monitoring the energy deposition in carbon-ion therapy are also discussed.
Keywords: 25.70.Mn 87.53.-j      87.53.Pb     
Received: 04 March 2009      Published: 28 August 2009
PACS:  25.70.Mn 87.53.-j  
  87.53.Pb  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/092501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/092501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Qiang
ZHANG Feng-Shou
WANG Zhi-Ping
ZHOU Hong-Yu
[1] Wilson R R 1946 Radiology 47 487
[2] Geissel H and Scheidenberger C 1998 Nucl. Instrum.Methods Phys. Res. B 114 136
[3] Scholz M 2000 Nucl. Instrum. Methods Phys. Res. B 76 161
[4] Durante M and Cucinotta F A 2008 Nature 8 465
[5] Tsujii H et al 2004 Radiother. Oncol. 73 41
[6] Schulz-Ertner D et al 2004 Int. J. Radiat. Oncol.Biol. Phys. 58 631
[7] Toshito T 2007 IEEE Nuclear Science SymposiumConference Record N40-3 2078
[8] Zeitlin C et al 2008 New. J. Phys. 10 075007
[9] Schimmerling W et al 1971 Science 174 1123
[10] Schimmerling W et al 1989 Radiat. Res. 120 36
[11] Schalla I, Schardta D, Geissela H, Irnicha H et al 1996 Nucl. Instrum. Methods Phys. Res. B 117 221
[12] Golovkov M, Aleksandrov D, Chulkov L, Kraus G and SchardtD 1997 Advances in Hadrontherapy 1144 316
[13] Matsufuji N et al 2003 Phys. Med. Biol. 481605
[14] Matsufuji N, Komori M, Sasaki H et al 2005 Phys.Med. Biol. 50 3393
[15] Xu S, Tay B K et al 1996 J. Appl. Phys. 797234
[16] Hollmark M et al 2008 Phys. Med. Biol. 533477
[17] GEANT4-Webpage 2008 http://www.geant4.org/geant4
[18] Pshenichnov I et al 2005 Phys. Med. Biol. 505493
[19] Pshenichnov I et al 2006 Phys. Med. Biol. 516099
[20] Thiam C O et al 2008 Phys. Med. Biol. 53 3039
[21] GEANT4-Documents-Physics Reference Manual 2008http://www.geant4.org/geant4/support/userdocuments.shtml
[22] Bethe H 1930 Ann. Physik 5 324
[23] Bloch F 1933 Ann. Physik 16 285
[24] Pshenichnov I, Mishustin I and Greiner W 2007 Int.Conf. Nucl. Data. Sci. Tech. ndata 07214
[25] Folger G, Ivanchenko V N and Wellisch J P 2004 Eur.Phys. J. A 21 407
[26] Agostinelli S et al 2003 Nucl. Instrum. MethodsPhys. Res. A 506 250
[27] Sihver L, Schardt D and Kanai T 1998 Japan. J. Med.Phys. 18 1
[28] Glauber R J 1970 High Energy Physics and NuclearStructure ed Devons S (New York: Plenum)
[29] Serber R 1947 Phys. Rev. 72 1114
[30] Zhang F S and Ge L X 1998 NuclearMultifragmentation (Beijing: Science Press) p 174 (in Chinese)
[31] Zhang F S 1996 Z. Phys. A 356 163
[32] Bian B A et al 2008 Chin. Phys. Lett. 25 451
[33] Bian B A, Zhang F S and Zhou H Y 2008 Nucl. Phys. A 807 71
[34] Wilson J W, Tripathi R K et al 1995 NASA TechnicalPaper 3533
[35] Townsend L W, Wilson J W, Tripathi R K, Norbury J W,Badavi F F and Khan F 1993 NASA Technical Paper 3310
[36] Gunzert-Marx K, Iwase H, Schardt D and Simon R S 2008 New J. Phys. 10 075003
[37] Iseki Y et al 2004 Phys. Med. Biol. 49 3179
[38] Urakabe E et al 2001 Jpn. J. Appl. Phys. 402540
[39] Pawelke J, Byars L et al 1996 Phys. Med. Biol. 41 279
[40] Pawelke J et al year???? IEEE Trans. Nucl. Sci. 44 1492
[41] Tobias C A et al 1977 Int. J. Radiat. Oncol. Biol.Phys. 3 35
Related articles from Frontiers Journals
[1] YANG Dai-Lun, WU Zhang-Wen, JIANG Steve-Bin, LUO Zheng-Ming. A Multiple Scattering Theory for Proton Penetration[J]. Chin. Phys. Lett., 2004, 21(12): 092501
Viewed
Full text


Abstract