Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 089801    DOI: 10.1088/0256-307X/26/8/089801
Original Articles |
Extended Analysis on New Generalized Chaplygin Gas
WANG Jun, WU Ya-Bo, WANG Di, YANG Wei-Qiang
Department of Physics, Liaoning Normal University, Dalian 116029
Cite this article:   
WANG Jun, WU Ya-Bo, WANG Di et al  2009 Chin. Phys. Lett. 26 089801
Download: PDF(313KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend the study of the new generalized Chaplygin gas (NGCG) based on [J. Cosmol. Astropart. Phys. 0601 (2006) 003]. Specifically, we not only discuss the change rates of the energy densities and the energy transfer of this model, but also perform the Om diagnostic to differentiate the ΛCDM model from the NGCG and the GCG models. Furthermore, in order to consider the influence of dark energy on structure formation, we also present the evolution of the growth index in this scenario with interaction.
Keywords: 98.80.Es      98.80.Jk     
Received: 09 April 2009      Published: 30 July 2009
PACS:  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/089801       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/089801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jun
WU Ya-Bo
WANG Di
YANG Wei-Qiang
[1] Riess A G et al 1998 Astron. J. 116 1009
[arXiv:astro-ph/9805201]
[2]Perlmutter S et al 1999 Astrophys. J. 517 565
[arXiv:astro-ph/9812133]
[3]Tegmark M et al 2004 Astrophys. Rev. D 69103501
[arXiv:astro-ph/0310723] Tegmark M et al 2004 Astrophys. J. 606 702
[arXiv:astro-ph/0310725]
[4]Wetterich C 1988 Nucl. Phys. B 302 668
[5]Amendola L 2000 Phys. Rev. D 62 043511
[arXiv:astro-ph/9908023]
[6]Caldwell R R 2002 Phys. Lett. B 545 23
[7]Padmanabhan T 2002 Phys. Rev. D 66 021301
[arXiv:hep-th/0204150]
[8]Bagla J S, Jassal H K and Padmanabhan T 2003 Phys.Rev. D 67 063504
[arXiv:astro-ph/0212198]
[9]Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[arXiv:hep-th/9906064]
[10]Bento M C, Bertolami O and Sen A A 2002 Phys. Rev. D 66 043507
[arXiv:gr-qc/0202064]
[11]Li M 2004 Phys. Lett. B 603 1
[arXiv:hep-th/0403127]
[12]Hinshaw G et al 2008 Astron. J. Suppl. 180 225
[arXiv:astro-ph/0803.0732]
[13]Komatsu E et al 2008 Astrophys. J. Suppl. 180330
[arXiv:astro-ph/0803.0547v2]
[14]Zhang Xin, Wu feng-Quan and Zhang Jingfei 2006 J.Cosmol. Astropart. Phys. 0601 003
[arXiv:astro-ph/0411221]
[15]Zimdahl W, Pavon D and Chimento L P 2001 Phys. Lett.B 521 133
[16]Liddle A R and Lyth D H 2000 Cosmological Inflationand Large-Scale Structure (London: Cambridge University) chap 4 p80
[17]Sen A A, Cardone V F, Capozziello S and Troisi A 2006 Astron. Astrophys. 460 29
[arXiv:astro-ph/0511313]
[18]Lahav O et al 2002 Mon. Not. Roy. Astron. Soc. 336 961
[19]Verde L, Kamionkowski M, Mohr J J and Benson A J 2001 Mon. Not. Roy. Astron. Soc. 321 L7
[20]Sahni V, Shafieloo A and Starobinsky A A 2008 Phys.Rev. D 78 103502
[arXiv:astro-ph/0807.3548]
[21]Wu Y B and Deng X M 2006 Mod. Phys. Lett. A 2114
[22]Wang C, Wu Y B and Liu F 2009 Chin. Phys. Lett. 26 029801
[http://cpl.iphy.ac.cn]
[23]Zhai X H, Xu Y D and Li X Z 2006 Int. J. Mod. Phys.D 15 1151
[arXiv:astro-ph/0511814]
[24]Liu D J and Li X Z 2005 Chin. Phys. Lett. 221600
[arXiv:astro-ph/0501115]
[25]Jian-gang Hao and Xin-zhou Li 2005 Phys. Lett. B 606 7
[arXiv:astro-ph/0404154]
Related articles from Frontiers Journals
[1] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 089801
[2] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 089801
[3] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 089801
[4] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 089801
[5] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 089801
[6] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 089801
[7] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 089801
[8] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 089801
[9] Shri Ram, M. K. Verma, Mohd. Zeyauddin. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation[J]. Chin. Phys. Lett., 2009, 26(8): 089801
[10] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models[J]. Chin. Phys. Lett., 2009, 26(8): 089801
[11] SHEN Ming. A New Solution to Einstein's Field Equations[J]. Chin. Phys. Lett., 2009, 26(6): 089801
[12] FU Huan-Huan, WU Ya-Bo, CHENG Fang-Yuan. Dynamical Stability and Attractor of the Variable Generalized Chaplygin Gas Model[J]. Chin. Phys. Lett., 2009, 26(6): 089801
[13] LIANG Nan, GAO Chang-Jun, ZHANG Shuang-Nan,. A Two-Field Dilaton Model of Dark Energy[J]. Chin. Phys. Lett., 2009, 26(6): 089801
[14] WANG Cong, WU Ya-Bo, LIU Fei. Evolution of Holographic Dark Energy in Interacting Modified Chaplygin Gas Model[J]. Chin. Phys. Lett., 2009, 26(2): 089801
[15] EL-NABULSI Ahmad Rami. Accelerated D-Dimensional Compactified Universe in Gauss--Bonnet--Dilatonic Scalar Gravity from D-Brane/M-Theory[J]. Chin. Phys. Lett., 2008, 25(8): 089801
Viewed
Full text


Abstract