Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 086101    DOI: 10.1088/0256-307X/26/8/086101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Comparative Study of Activity of Different Agings of Aluminum Nanopowders
YAN Zheng-Xin1,2, DENG Jun1, WANF Ya-Min2, LIU Wei2
1Key Laboratory of Western Mine Exploitation and Hazard Prevention of the Ministry of Education, Xi'an University of Science and Technology, Xi'an 7100542College of Science, Xi'an University of Science and Technology, Xi'an 710054
Cite this article:   
YAN Zheng-Xin, DENG Jun, WANF Ya-Min et al  2009 Chin. Phys. Lett. 26 086101
Download: PDF(533KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structure and activity of aluminum nanopowders with a 3nm oxide layer on their surface (3-nm-OLA) and 30nm oxide layers on their surface (30-nm-OLA) are investigated comparably under the same normal incident shock wave intensity. Their corresponding reaction products are characterized by x-ray diffraction, high-resolution transmission electron microscopy and x-ray photoelectron spectroscopy. The spectrum of x-ray diffraction shows that there are different phases of alumina in their products, which evidences directly the different reacting temperature in the shock tube. The x-ray photoelectron spectroscopy reveals that the oxide layer thickness is 30nm on the product surface of 30-nm-OLA, while it is only 3nm on 3-nm-OLA. Images of transmission electron microscopy present additional evidence that the agglomeration mechanism is over sintering one in the containing-30-nm-OLA system, the reversed mechanism is observed in the containing-3-nm-OLA
reaction system.
Keywords: 61.46.-w      81.40.Vw      34.80.Dp     
Received: 09 March 2009      Published: 30 July 2009
PACS:  61.46.-w (Structure of nanoscale materials)  
  81.40.Vw (Pressure treatment)  
  34.80.Dp (Atomic excitation and ionization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/086101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/086101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Zheng-Xin
DENG Jun
WANF Ya-Min
LIU Wei
[1] Suits B H, Apte P, Wilken D E and Siegel R W 1995 Nanostruct Mater. 6 609
[2] H. Gleiter 1992 Nanostruct. Mater. 1 1
[3] Bi X X, Ganguly B, Huffman G P, Huggins F E, Endo M, andEklund P C 1993 J. Mate. Res. 8 1666
[4] Foster C M and Parker J C 1993 J. Mater. Res. 8 1977
[5] Koch C C 1993 Nanostruct. Mater. 2 109
[6] S. Komameni 1992 J. Mater. Chem. 2 1219
[7] Glotov O G 2006 Comb. Exp. Shock Waves 42 436
[8] Karasev V V, Glotov O G and Baklonav A M 2002 33thInt. Annual Conference of ICT (Karlsruhe, Germany 25--28 June 2002)p 14
[9] O. G. Glotov, Yagodnikov D A, Zarko V E and Karasev V V2006 Combustion, Explosion, and Shock Waves 43 59
[10] Xu Y C and Daniel E R 1996 Comb. Flame 10785
[11] Kwon Y S, Alexander A G, Elenam P and Geun H R 2003 Combust. Flame 133 385
[12] Yan Z X, Wu J H, Hu D and Yan X D 2006 Chin. Phys.Lett. 32 217
[13] Incropera F P and David P D 1996 Fundamentals ofHeat and Mass Transfer 4th edn (NewYork: Willey) pp 239--326
[14] Weast R C (Editor-in-Chief) 1984 CRC Handbook ofChemistry and Physics 64th edN (Boca Raton, FL: CRC Press)
[15] Aumann C E, Skofronick G L and Martin J A 1995 J.Vac. Sci. Technol. B 13 1178
Related articles from Frontiers Journals
[1] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 086101
[2] GAO Xiang, LI Jia-Ming. An Effective Eigenchannel R-Matrix Method for Calculating Electron-Ion Scattering Processes with Spectroscopic Precision[J]. Chin. Phys. Lett., 2012, 29(3): 086101
[3] WANG Yang**, ZHOU Ya-Jun, JIAO Li-Guang. Second-Order Born Effect in Single Ionization of Argon by Electron Impact[J]. Chin. Phys. Lett., 2012, 29(1): 086101
[4] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 086101
[5] REN Lin-Mao, WANG You-Yan, LI Dong-Dong, YUAN Zhen-Sheng, ZHU Lin-Fan** . Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution[J]. Chin. Phys. Lett., 2011, 28(5): 086101
[6] GAO Xiang**, CHENG Cheng, LI Jia-Ming, . Fine Structures of Atomic Excited States: Precision Atomic Spectroscopy and Electron-Ion Collision Process[J]. Chin. Phys. Lett., 2011, 28(3): 086101
[7] ZHANG Xiao-Fei, ZHANG Chu-Hang, LV Neng, XIE Jian-Ping, YE Gao-Xiang,. Condensation Behavior of Ag Aggregates on Liquid Surfaces[J]. Chin. Phys. Lett., 2010, 27(9): 086101
[8] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 086101
[9] TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei, LI Xue-Fei, CUI Qi-Liang, CUI Tian, LIU Bing-Bing, ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa[J]. Chin. Phys. Lett., 2010, 27(2): 086101
[10] YANG Ning-Xuan**, JIANG Jun, DONG Chen-Zhong,. Differential and Integral Cross Sections for Electron Impact Excitation of Lithium[J]. Chin. Phys. Lett., 2010, 27(11): 086101
[11] BAI Xue, ZHAO Jun, WEI Bao-Ren, ZHANG Xue-Mei, **. Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar[J]. Chin. Phys. Lett., 2010, 27(11): 086101
[12] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 086101
[13] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 086101
[14] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 086101
[15] LI Gong, DONG Yan-Guo, HUANG Lei, HE Guo-Wei, LIU Ri-Ping, WANGWen-Kui. High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(8): 086101
Viewed
Full text


Abstract