Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 074101    DOI: 10.1088/0256-307X/26/7/074101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Magnetic Field Structure and Induced Electric Current Distribution on a Cylindrical Model: Application to Magnetic Nerve Stimulation
Taishi Okita, Toshiyuki Takagi
Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
Cite this article:   
Taishi Okita, Toshiyuki Takagi 2009 Chin. Phys. Lett. 26 074101
Download: PDF(278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the relation between the magnetic field structure and the induced electric-current distribution based on a cylindrical model composed of a uniform electrically conductive medium. When the time-varying magnetic fields are axisymmetrically applied in the axial direction of the model, the electric fields are induced around the central axis in accordance with Faraday's law. We examine the eddy-current distributions generated by loop-coils with various geometries carrying an alternating electric current. It is shown that the radial structure of the induced fields can significantly be controlled by the loop coil geometry, which will be suitable for practical use especially in magnetic nerve stimulation on bioelectromagnetics, if we appropriately place the exciting coil with optimum geometry.
Keywords: 41.20.Gz     
Received: 03 April 2009      Published: 02 July 2009
PACS:  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/074101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/074101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Taishi Okita
Toshiyuki Takagi
[1] Dodd C V and Deeds W E 1968 J. Appl. Phys. 392829
[2] Dodd C V and Deeds W E 1969 Inter. J. Nondestr.Test. 1 29
[3] Bowler J R 1994 J. Appl. Phys. 75 8128
[4] Burke S K 1994 J. Appl. Phys. 76 3072
[5] Jackson J D 1962 Classical Electrodynamics (NewYork: Wiley)
[6] Ueno S et al 1990 J. Appl. Phys. 67 5838
[7] Roth Y 2002 J. Clinic. Neurophys. 19 361
[8] Sekino M and Ueno S 2002 J. Appl. Phys. 918730
[9] Miranda P C et al 2003 IEEE Trans. Biomed. Eng. 50 1074
[10] Rotem A and Moses E 2006 IEEE Trans. Biomed. Eng. 53 414
[11] Wagner T et al 2007 Annu. Rev. Biomed. Eng. 919.1
[12] Hart P J 1964 J. Appl. Phys. 35 508
[13] Boridy E 1989 J. Appl. Phys. 66 5691
[14] Eaton H 1992 Med. Biol. Eng. Comput. 30 433
[15] Plonsey R 1969 Bioelectric Phenomena (New York:McGraw-Hill)
[16] Bencsik M, Bowtell R and Bowley R M 2002 Phys. Med.Biol. 47 557
[17] Barker A T et al 1987 Neurosurg. 20 100
[18] Yamaguchi M et al 1989 J. Appl. Phys. 66 1459
[19] Roth B J and Basser P J 1990 IEEE Trans. Biomed.Eng. 37 588
[20] Miranda P C et al 2007 Phys. Med. Biol. 525603
[21] Kobayashi M, Ueno S and Kurosawa T 1997 Electroenceph. Clin. Neurophys. 105 406
Related articles from Frontiers Journals
[1] Wei-Guo Lu, Hui-Rong Li, Wei-Ming Chen, Li-Hui Liu. Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless Power Transfer System[J]. Chin. Phys. Lett., 2017, 34(8): 074101
[2] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 074101
[3] LIU Hai-Tao, LIU Yang, WANG Bin-Song, LI Chen-Sha. Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers[J]. Chin. Phys. Lett., 2015, 32(4): 074101
Viewed
Full text


Abstract