Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 067101    DOI: 10.1088/0256-307X/26/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Modification of Band Gap of -SiC by N-Doping
LIU Hong-Sheng1, FANG Xiao-Yong1, SONG Wei-Li2, HOU Zhi-Ling2, LU Ran1,2, YUAN Jie3, CAO Mao-Sheng2
1School of Science, Yanshan University, Qinghuangdao 0660042School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 1000813School of Information Engineering, Central University for Nationalities, Beijing 100081
Cite this article:   
LIU Hong-Sheng, FANG Xiao-Yong, SONG Wei-Li et al  2009 Chin. Phys. Lett. 26 067101
Download: PDF(577KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geometrical and electronic structures of nitrogen-doped β-SiC are investigated by employing the first principles of plane wave ultra-soft pseudo-potential technology based on density functional theory. The structures of SiC1-xNx (x=0, 1/32, 1/16, 1/8, 1/4) with different doping concentrations are optimized. The results reveal that the band gap of β-SiC transforms from an indirect band gap to a direct band gap with band gap shrinkage after carbon atoms are replaced by nitrogen atoms. The Fermi level shifts from valence band top to conduction band by doping nitrogen in pure β-SiC, and the doped β-SiC becomes metallic. The degree of Fermi levels entering into the conduction band increases with the increment of doping concentration; however, the band gap becomes narrower. This is attributed to defects with negative electricity occurring in surrounding silicon atoms. With the increase of doping concentration, more residual electrons, more easily captured by the 3p orbit in the silicon atom, will be provided by nitrogen atoms to form more defects with negative electricity.
Keywords: 71.15.-m      61.72.Up     
Received: 16 February 2009      Published: 01 June 2009
PACS:  71.15.-m (Methods of electronic structure calculations)  
  61.72.up (Other materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/067101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hong-Sheng
FANG Xiao-Yong
SONG Wei-Li
HOU Zhi-Ling
LU Ran
YUAN Jie
CAO Mao-Sheng
[1] Matsunami H 2006 Microelectron. Eng. 83 2
[2] Baliga B J 1996 Inst. Phys. Conf. Ser. 142 1
[3] Weitzel C E 1998 Mater. Sci. Forum 264--268907
[4] Costa A K and Camargo S S 2003 Surf. Coat. Technol. 163--164 176
[5] Ordine A, Achete C A, Mattos O R, Margarit I C P andCamargo S S 2000 Surf. Coat. Technol. 133--134 583
[6] Rottner K, Frischolez M, Myrtveit T, Mou D, Nordgren K,Henry A, Hallin C, Gustafsson U and Schoner A 1999 Mater. Sci.Eng. B 61--62 330
[7] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L andCao M S 2008 Chin. Phys. Lett. 25 1902
[8] Zou G Z, Cao M S, Lin H B, Jin H B, Kang Y Q and Chen Y J2006 Powder Technol. 168 84
[9] Zou G Z, Cao M S, Zhang L, Li J G, Xu H and Chen Y J 2006 Surf. Coat. Technol. 201 108
[10] Zou G Z, Cao M S, Zhang L, Jin H B, Xu H and Wang Z P2006 J. Inorg. Mater. 21 797
[11] Lu R, Fang X Y, Kang Y Q, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 044101
[12] Tan C, Wu X L, Deng S S, Huang G S, Liu X N and Bao X M2003 Phys. Lett. A 310 236
[13] Mehregany M, Zorman C A, Roy S, Fleischman A J, Wu C Hand Rajan N 2000 Int. Metall. Rev. 45 85
[14] Raynaud C 2001 J. Non-Cryst. Solids 280 1
[15] Zielinski M, Portail M, Chassagne T, Juillaguet S andPeyre H 2008 J. Cryst. Growth 310 3174
[16] Su J F, Yao R, Zhong Z and Fu Z X 2008 Chin. Phys.Lett. 25 3346
[17] Roccaforte F, Libertino S, Giannazzo F, Bongiorno C, ViaF L and Raineri V 2005 J. Appl. Phys. 97 123502
[18] Gao F, Du J, Bylaska E J, Posselt M and Weber M J 2007 Appl. Phys. Lett. 90 221915
[19] Giannazzo F, Roccaforte F and Raineri V 2007 Appl.Phys. Lett. 91 202104
[20] Heera V, Madhusoodanan K N, Skorupa W, Dubois C andRomanus H 2006 J. Appl. Phys. 99 123716
[21] Son N T, Henry A, Isoya J, Katagiri M, Umeda T, Gali Aand Janz\'{en E 2006 Phys. Rev. B 73 075201
[22] Negoro Y, Katsumoto K, Kimoto T and Matsunami H 2004 J. Appl. Phys. 96 224
[23] Duijn-Arnold A V, Zondervan R, Schmidt J, Baranov P G andMokhov E N 2001 Phys. Rev. B 64 085206
[24] Capano M A,Cooper J A, Melloch M R, Saxler A and MitchelW C 2000 J. Appl. Phys. 87 8773
[25] Katulka G,Guedj C, Kolodzey J, Wilson R, Consultant G,Swann C, Tsao M W and Rabolt J 1999 Appl. Phys. Lett. 74540
[26] Jeon Y S, Shin H, Lee Y H and Kang S W 2008 J.Mater. Res. 23 1020
[27] Lindefelt U 1998 J. Appl. Phys. 84 2628
[28] Park K B, Ding Y, Pelz J P, Neudeck P G and Trunek A J2006 Appl. Phys. Lett. 89 042103
[29] Segall M, Lindan P, Probet M, Pickard C, Hasnip P, ClarkS and Payne M 2002 J. Phys. Condens. Mat. 14 2717
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Vispute R D, Talyansky V, Choopun S, Sharma R P,Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X andSalamanca-Riba L G 1998 Appl. Phys. Lett. 73 348
[32] Mlilman V, Warren M C 2001 J. Phys. Condens. Matter 13 241
[33] Suzuki M, Hasegawa Y, Aizawa M, Nakara Y, Okutani T andUosaki K 1995 J. Am. Ceram. Soc. 78 83
Related articles from Frontiers Journals
[1] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 067101
[2] WANG Li-Na, FANG Xiao-Yong**, HOU Zhi-Ling, LI Ya-Lin, WANG Kun, YUAN Jie, CAO Mao-Sheng** . Polarization Mechanism of Oxygen Vacancy and Its Influence on Dielectric Properties in ZnO[J]. Chin. Phys. Lett., 2011, 28(2): 067101
[3] CHEN Tian-Xiang, YAO Shu-De, HUA Wei, FA Tao, LI Lin, ZHOU Sheng-Qiang. Charge Transport and Magnetotransport Properties of Polyimide Irradiated by 80keV Co Ions[J]. Chin. Phys. Lett., 2009, 26(8): 067101
[4] SU Jian-Feng, YAO Ran, ZHONG Ze, FU Zhu-Xi. Effect of Al Doping on Properties of SiC Films[J]. Chin. Phys. Lett., 2008, 25(9): 067101
[5] CHEN Jing-Zhe, CHEN Xing, LIU Guang-Hua, HAN Ru-Shan. Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes[J]. Chin. Phys. Lett., 2008, 25(8): 067101
[6] YANG Xi-Feng, LIU Zhao-Lin, CHEN Ping-Ping, CHEN Xiao-Shuang, LI Tian-Xin, LU Wei. Broadening of Photoluminescence by Nonhomogeneous Size Distribution of Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(8): 067101
[7] WANG Xi-En, LIU Ting-Yu, ZHANG Qi-Ren, ZHANG Hai-Yan, SONG Min, GUOXiao-Feng, YIN Ji-Gang. First Principles Study on Electronic Structures of Mn2+:CdMoO4 Crystals[J]. Chin. Phys. Lett., 2008, 25(3): 067101
[8] CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains[J]. Chin. Phys. Lett., 2008, 25(3): 067101
[9] CHEN Jian-Yu, ZHANG Qi-Ren, LIU Ting-Yu, SHAO Ze-Xu, PU Chun-Ying. Electronic Structures of PbMoO4 Crystals with F-Type Colour Centres[J]. Chin. Phys. Lett., 2007, 24(6): 067101
[10] MA Chun-Lan, PAN Tao. Electronic Structures of the Filled Tetrahedral Semiconductor Li3AlN2[J]. Chin. Phys. Lett., 2006, 23(1): 067101
[11] ZHANG Ying, GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity[J]. Chin. Phys. Lett., 2005, 22(2): 067101
[12] XU Tian, CAO Zhuang-Qi, OU Yong-Cheng, ZHU Guo-Long. Accurate Bound-State Spectra for Hydrogenic Donors in GaAs--(Ga, Al)As Quantum Dots[J]. Chin. Phys. Lett., 2005, 22(11): 067101
[13] TANG Shao-Qiang, ZHANG Da-Peng. Pseudo-Hydrodynamic Approximation for Transient Computation of Energy-Transport Models in Semiconductors[J]. Chin. Phys. Lett., 2005, 22(10): 067101
[14] YI Zhi-Jun, LIU Ting-Yu, ZHANG Qi-Ren, SUN Yuan-Yuan. Electronic Structures of PbWO4 Crystals Containing F-Type Colour Centres[J]. Chin. Phys. Lett., 2005, 22(10): 067101
[15] ZENG Yong-Zhi, HUANG Mei-Chun. Electronic and Magnetic Properties of 3d Transition-Metal-Doped III-V Magnetic Semiconductor[J]. Chin. Phys. Lett., 2004, 21(8): 067101
Viewed
Full text


Abstract