Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 066202    DOI: 10.1088/0256-307X/26/6/066202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Dependence of Nanofluid Viscosity on Particle Size and pH Value
ZHAO Jia-Fei, LUO Zhong-Yang, NI Ming-Jiang, CEN Ke-Fa
Institute for Thermal Power Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHAO Jia-Fei, LUO Zhong-Yang, NI Ming-Jiang et al  2009 Chin. Phys. Lett. 26 066202
Download: PDF(286KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the viscosity of silicon dioxide nanofluid at different particle sizes and pH values considering nanoparticle aggregation. The experimental and simulation results indicate that nanoparticle size is of crucial importance to the viscosity of the nanofluid due to aggregation. As the nanoparticle size decreases, the viscosity becomes much more dependent on the volume fraction. Moreover, when the nanoparticle diameter is smaller than 20nm, the viscosity is closely related to the pH of the nanofluid, and fluctuates with pH values from 5 and 7.
Keywords: 62.10.+s      83.85.Jn      51.20.+d     
Received: 14 January 2009      Published: 01 June 2009
PACS:  62.10.+s (Mechanical properties of liquids)  
  83.85.Jn (Viscosity measurements)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/066202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/066202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jia-Fei
LUO Zhong-Yang
NI Ming-Jiang
CEN Ke-Fa
[1] Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T,Boucher S and Mintsa H A 2007 Int. J. Heat Fluid Flow 281492
[2] Chon C H, Kilm K D, Lee S P and Choi 2005 Appl. Phys.Lett. 87 153107
[3] Putra N, Roetzel W and Das S K 2003 Heat MassTransfer 39 775
[4] Yang Y, Zhang Z G, Grulke E A, Andersen W B and Wu G 2005 Int. J. Heat Mass Transfer 48 1107
[5]. Prasher R, Song D and Wang J L 2006 Appl. Phys.Lett. 89 133108
[6] Buongiorno J 2006 J. Heat Transfer 128 240
[7] Mansour R B, Galanis N and Nguyen C T 2007 Appl.Therm. Eng. 27 240
[8] Degussa 2007 http://www.degussa.com/degussa/en/
[9] Potanin A A, Rooij De R, Ende D V D and Mellema J 1993 J. Chem. Phys. 99 9213
[10] Prasher R, Phelan P E and Bhattacharya P 2006 Nano.Lett. 6 1529
[11] Chow T S 1993 Phys. Rev. E 48 1977
[12] Rubio-hernandez F J, Ayucar-Rubio M F, Velazquez-NavarroJ F and Galindo-Rosales F J 2006 J. Colloid Interface Sci. 298 967
Related articles from Frontiers Journals
[1] CHEN Shi-Qiang, WANG Hai-Xing. Transport Properties of Lithium Plasma[J]. Chin. Phys. Lett., 2012, 29(2): 066202
[2] M. Todica, C. V. Pop, L. Udrescu, M. Pop. Rheological Behavior of Some Aqueous Gels of Carbopol with Pharmaceutical Applications[J]. Chin. Phys. Lett., 2010, 27(1): 066202
[3] LI Yi-Lei, LIU Fu-Sheng, ZHANG Ming-Jian, MA Xiao-Juan, LI Ying-Lei, ZHANG Ji-Chun. Measurement on Effective Shear Viscosity Coefficient of Iron under Shock Compression at 100GPa[J]. Chin. Phys. Lett., 2009, 26(3): 066202
[4] ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong, SONG Hong-Zhang, CHENG Li-Hong, HUI Sen-Xing, YIN Qing-Rui. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2009, 26(10): 066202
[5] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 066202
[6] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 066202
[7] LIU Fu-Sheng, YANG Mei-Xia, LIU Qi-Wen, CHEN Jun-Xiang, JING Fu-Qian,. Shear Viscosity of Aluminium under Shock Compression[J]. Chin. Phys. Lett., 2005, 22(3): 066202
[8] WANG En-Ke. Nonperturbative Calculation of Shear Viscosity from the Basis of the Keldysh Field in Thermal Ф4 Theory[J]. Chin. Phys. Lett., 2002, 19(8): 066202
[9] SUN Cheng-Hai. Thermal Lattice Boltzmann Model for Compressible Fluid[J]. Chin. Phys. Lett., 2000, 17(3): 066202
[10] SUN Cheng-Hai. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice[J]. Chin. Phys. Lett., 2000, 17(10): 066202
[11] ZHU Shao-ping, GU Pei-jun. A Heat Transport Model Including the Effect of Non-Maxwellian Electron Distribution and Its Application in Laser Produced Plasma[J]. Chin. Phys. Lett., 1999, 16(7): 066202
[12] YI Sunsheng, SUN Jirong, WANG Chaoying, LU Kunquan, YI Heling*. Abnormal Viscosity of A1 Electro-Rheology Fluid[J]. Chin. Phys. Lett., 1995, 12(4): 066202
[13] HONG Xinguo, LU Kunquan. Torsion Pendulum Method in Viscosity Measurement of Melts[J]. Chin. Phys. Lett., 1995, 12(11): 066202
Viewed
Full text


Abstract