Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064401    DOI: 10.1088/0256-307X/26/6/064401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media
CAI Jun, HUAI Xiu-Lan
Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CAI Jun, HUAI Xiu-Lan 2009 Chin. Phys. Lett. 26 064401
Download: PDF(265KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid. The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.
Keywords: 44.35.+c      44.05.+e     
Received: 27 September 2008      Published: 01 June 2009
PACS:  44.35.+c (Heat flow in multiphase systems)  
  44.05.+e (Analytical and numerical techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jun
HUAI Xiu-Lan
[1] Nield D A and Bejan A 1992 Convection in PorousMedia (New York: Springer)
[2] Nithiarasu P, Seetharamu K N and Sundararajan T 1997 Int. J. Heat Mass Transfer 40 3955
[3] Nithiarasu P and Ravindran K 1998 Comput. Meth. Appl.Mech. Eng. 165 147
[4] Wang W W, Huai X L and Tao Y J 2006 Chin. Phys.Lett. 23 1151
[5] Huai X L, Wang W W and Li Z G 2007 Appl. Therm. Eng. 27 2815
[6] Lv Y G, Huai X L and Wang W W 2006 Chem. Eng. Sci. 61 5717
[7] Chen S and Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329
[8] Pan C, Hilpert M and Miller C T 2004 Water Resour.Res. 40 W01501
[9] Qian J Y, Li Q, Yu K and Xuan Y M 2004 Sci. Chin. E:Engin. Mater. Sci. 47 716
[10] Guo Z L and Zhao T S 2005 Numer. Heat Transfer B 47 157
[11] Peng Y, Shu C and Chew Y T 2003 Phys. Rev. E 68 026701
[12] Wang J K, Wang M R and Li Z X 2007 Int. J. Therm.Sci. 46 228
[13] Zou Q S and He X Y 1997 Phys. Fluids 9 1591
[14] Wang W W, Huai X L and Cai J 2007 Chin. J. Eng.Thermophys. 28 118
[15] Inamuro T, Yoshino M and Ogino F 1995 Phys. Fluids 7 2928
[16] Tang G H, Tao W Q and He Y L 2005 Phys. Rev. E 72 016703
Related articles from Frontiers Journals
[1] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 064401
[2] BEZ�, R C�, CEK Nalan**, &Scedil, AH�, N &Scedil, ENCAN Arzu . Thermal Efficiency for Each Zone of a Solar Pond[J]. Chin. Phys. Lett., 2011, 28(10): 064401
[3] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 064401
[4] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 064401
[5] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 064401
[6] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 064401
[7] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 064401
[8] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 064401
[9] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 064401
[10] LUO Xiao-Ping, CUI Z. F.. Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation[J]. Chin. Phys. Lett., 2008, 25(6): 064401
[11] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 064401
[12] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 064401
[13] Arafa H. Aly. Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact[J]. Chin. Phys. Lett., 2008, 25(12): 064401
[14] WANG Qing-Song, LAN Qiang, HU Jian-Bo, WU Jing, DAI Cheng-Da. Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures[J]. Chin. Phys. Lett., 2008, 25(12): 064401
[15] KANG Jing, QU Chang-Zheng,. Linearization of Systems of Nonlinear Diffusion Equations[J]. Chin. Phys. Lett., 2007, 24(9): 064401
Viewed
Full text


Abstract