Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050202    DOI: 10.1088/0256-307X/26/5/050202
GENERAL |
Group Classification and Exact Solutions of a Class of Variable Coefficient Nonlinear Wave Equations
HUANG Ding-Jiang1, MEI Jian-Qin2, ZHANG Hong-Qing2
1Department of Mathematics, East China University of Science and Technology, Shanghai 2002372Department of Applied Mathematics, Dalian University of Technology, Dalian 116024
Cite this article:   
HUANG Ding-Jiang, MEI Jian-Qin, ZHANG Hong-Qing 2009 Chin. Phys. Lett. 26 050202
Download: PDF(262KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Complete group classification of a class of variable coefficient (1+1)-dimensional wave equations is performed. The possible additional equivalence transformations between equations from the class under consideration and the conditional equivalence groups are also investigated. These allow simplification of the results of the classification and further applications of them. The derived Lie symmetries are used to construct exact solutions of special forms of these equations via the classical Lie method. Nonclassical symmetries of the wave equations are discussed.
Keywords: 02.20.Sv      02.30.Jr     
Received: 01 September 2008      Published: 23 April 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Ding-Jiang
MEI Jian-Qin
ZHANG Hong-Qing
[1] Ames W F 1972 Nonlinear Partial DifferentialEquations in Engineering (New York: Academic)
[2] Ames W F, Adams E and Lohner R J 1981 Int. J.Non-Linear Mech. 16 439
[3] Bluman G and Cheviakov A F 2007 J. Math. Anal. Appl. 333 93
[4] Bluman G W and Kumei S 1989 Symmetries andDifferential Equations (New York: Springer)
[5] Bluman G, Temuerchaolu and Sahadevan R 2005 J. Math.Phys. 46 023505
[6] Chikwendu S C 1981 Int. J. Non-Linear Mech. 16117
[7] Donato A 1987 Int. J. Non-Linear Mech. 22 307
[8] Gandarias M L, Torrisi M and Valenti A 2004 Int. J.Non-Linear Mech. 39 389
[9] Huang D J and Ivanova N M 2007 J. Math. Phys 48 073507 (23 pages)
[10] Ibragimov N H 1994 Lie Group Analysis ofDifferential Equations-Symmetries, Exact Solutions and ConservationLaws (Boca Raton, FL: CRC) vol 1
[11] Ibragimov N H, Torrisi M and Valenti A 1991 J. Math.Phys. 32 2988
[12] Kingston J G and Sophocleous C 1998 J. Phys. A:Math. Gen. 31 1597
[13] Lahno V, Zhdanov R and Magda O 2006 Acta Appl.Math. 91 253
[14] Lie S 1881 On Integration of a Class of LinearPartial Differential Equations by Means of Definite Integrals (CRCHandbook of Lie Group Analysis of Differential Equations) vol 2 pp473 (translation by Ibragimov N H of Arch. for Math., Bd. VI, Heft3, 328--368, Kristiania)
[15] Meleshko S V 1994 J. Appl. Math. Mech. 58 629
[16] Olver P J 1986 Application of Lie Groups toDifferential Equations (New York: Springer)
[17] Oron A and Rosenau P 1986 Phys. Lett. A 118172
[18] Ovsiannikov L V 1982 Group Analysis of DifferentialEquations (New York: Academic)
[19] Patera J and Winternitz P 1977 J. Math. Phys. 18 1449
[20] Popovych R O and Ivanova N M 2004 J. Phys. A: Math.Gen. 37 7547
[21] Pucci E 1987 Riv. Mat. Univ. Parma 12N4 71
[22] Pucci E and Salvatori M C 1986 Int. J. Non-LinearMech. 21 147
[23] Torrisi M and Valenti A 1985 Int. J. Non-LinearMech. 20 135
[24] Vaneeva O O, Johnpillai A G, Popovych R O and SophocleousC 2008 Appl. Math. Lett. 21 248
[24] Zhdanov R Z and Lahno V I 1998 Physica D: NonlinearPhenomena 122 178
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050202
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 050202
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050202
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 050202
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050202
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050202
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050202
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 050202
[14] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 050202
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050202
Viewed
Full text


Abstract