Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 035204    DOI: 10.1088/0256-307X/26/3/035204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array
LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai
College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai 2009 Chin. Phys. Lett. 26 035204
Download: PDF(491KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spontaneous outspread of surface-wave plasma (SWP) towards the edge of large-scale quartz window is studied using a time-stepping self-consistent model. The performances of three different types of slot-antenna arrays are compared, and the electron density distributions for each array at different stages are presented. The results show that slotting along both x and y directions can be helpful to the outspread and can thus enhance the uniformity of SWP. Meanwhile, when we use such an array, the absorption rate of input microwave power can reach more than 83%.
Keywords: 52.35.Hr      52.50.Dg     
Received: 14 November 2008      Published: 19 February 2009
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.50.Dg (Plasma sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/035204       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/035204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAN Chao-Hui
HU Xi-Wei
LIU Ming-Hai
[1] Ghanashev I and Sugai H 2000 Phys. Plasmas 73051
[2] Ganashev I, Nagatsu M, and Sugai H 1997 Jpn. J. Appl.Phys. 36 337
[3] Sugai H, Ghanashev I, and Nagatsu M 1998 PlasmaSources Sci. Technol. 7 192
[4] Kousaka H, Ono K. 2002 Jpn. J. Appl. Phys. 412199
[5] Chen Q, Aoyagi H P, Katsurai M 1999 IEEE Trans.Plasma Sci. 27 164
[6] Tatarova E, Dias F M, and Ferreira C M 1998 J. Appl.Phys. 83 4602
[7] Tatarova E, Dias F M, Henriques J and Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866
[8] Xu X, Liu F, Zhou Q H, Liang B, Liang Y Z, and Liang R Q2008 Appl. Phys. Lett. 92 011501.
[9] Liang Y z, Ou Q R, Liang B, and Liang R Q 2008 Chin.Phys. Lett. 25 1761
[10] Chen Z Q, Zhou P Q, Chen W, Lan C H, Liu M H and Hu X W2008 Plasma Sci. and Technol. 10 655
[11] Lan C H, Chen Z Q, Liu M H and Hu X W 2008 PlasmaSci. Technol. (accepted).
[12] Ashida S, Lee C, and Lieberman M A 1995 J. Vac. Sci.Technol. A 13 2498
[13] Taflove A 1995 Computational Electrodynamics: theFinite-Difference Time-Domain Method (Boston: Artech House)
[14] Kashiwa T and Fukai I 1990 Microwave Opt. Technol.Lett. 3 203
[15] Kashiwa T and Fukai I 1990 IEEE Trans. Inst.Electron. Inform. Commun. Eng. 73 1326
Related articles from Frontiers Journals
[1] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 035204
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 035204
[3] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 035204
[4] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 035204
[5] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 035204
[6] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 035204
[7] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 035204
[8] NI Guo-Hua, MENG Yue-Dong, CHENG Cheng, LAN Yan. Characteristics of a Novel Water Plasma Torch[J]. Chin. Phys. Lett., 2010, 27(5): 035204
[9] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 035204
[10] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 035204
[11] GAO Wei, SUN Bin, DING Zhen-Feng. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities[J]. Chin. Phys. Lett., 2009, 26(6): 035204
[12] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 035204
[13] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 035204
[14] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 035204
[15] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 035204
Viewed
Full text


Abstract