Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 024205    DOI: 10.1088/0256-307X/26/2/024205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Formation of Hot Images in Laser Beams through a Self-defocusing Kerr Medium Slab
WANG You-Wen1,2, DENG Jian-Qin1, CHEN Lie-Zun1,2, WEN Shuang-Chun1, YOU Kai-Ming 1,2
1Key Laboratory for Micro/Nano Optoelectronic Devices (Ministry of Education), School of Computer and Communication, Hunan University, Changsha 4100822Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008
Cite this article:   
WANG You-Wen, DENG Jian-Qin, CHEN Lie-Zun et al  2009 Chin. Phys. Lett. 26 024205
Download: PDF(510KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A nonlinear hot image is usually thought as of a special case of self-focusing, and thus occurs when a laser beam propagates through a slab of self-focusing medium. Here we show theoretically that a hot image may also be formed by a thin slab of self-defocusing medium. The physical origin for this hot image formation is akin to the in-line volume--phase holographic imaging due to the intensity-dependent refractive-index modulation of the self-defocusing medium. Numerical simulations confirm the theoretical prediction and further identify the dependence of the hot image on the beam power, the modulation depth of obscuration and the thickness of self-defocusing medium. The analysis presented here brings new insight into the physics of hot image formation in the high power laser system
Keywords: 42.65.Jx      42.40.Pa      42.25.Fx     
Received: 16 June 2008      Published: 20 January 2009
PACS:  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.40.Pa (Volume holograms)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/024205       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/024205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG You-Wen
DENG Jian-Qin
CHEN Lie-Zun
WEN Shuang-Chun
YOU Kai-Ming
[1] Hunt J T et al 1993 Appl. Opt. 32 5973
[2] Williams W H et al 1996 ICF Quart. Rep. 6 7
[3] Widmayer C C et al 1997 Appl. Opt. 36 9342
[4] Widmayer C C et al 1998 Appl. Opt. 37 4801
[5] Xie L P et al 2004 Opt. Commun. 236 343
[6] Xie L P et al 2004 Acta Phys. Sin. 53 2175 (inChinese)
[7] Wang Y W et al 2007 Acta Phys. Sin. 56 5855(in Chinese)
[8] Wang Y W, Wen S C, Zhang L F, Hu Y H and Fan D Y 2008 Appl. Opt. 47 1152
[9] Roth U, Loewenthal F, Tommasini R, Balmer J E and Weber HP 2000 IEEE J. Quant. Electron. 36 687
[10] Konoplev O A and Meyerhofer D D 1998 IEEE J Quant.Electron. 4 459
[11] Bechwitt K, Wise F W, Qian L J, Walker II L A andCanto-Said E 2001 Opt. Lett. 26 1696
[12] Deng L, He K, Zhou T and Li C 2005 J. Opt. A 7 409
[13] Hu W, Wen S, Guo H and Fan D 2001 J. Phys. D 34 3267
[14] Radhakrishnan R and Aravinthan K 2007 Phys. Rev. E 75 066605
[15] Liou L W, Cao X D, McKinstrie C J and Agrawal G P 1992 Phys. Rev. A 46 4202
[16] Gao Y M and Liu S M 2007 Chin. Phys. Lett. 24 1596
[17] Cui W N, Sun C L and Huang G X 2003 Chin. Phys.Lett. 20 246
[18] Efremidis N K, Hizanidis K, Malomed B A and Di Trapani P2007 Phys. Rev. Lett. 98 113901
[19] Born M and Wolf E 1999 Principle of Optics(Cambridge: Cambridge University Press) Chap 8
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 024205
[2] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 024205
[3] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 024205
[4] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 024205
[5] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 024205
[6] CHEN Zhi-Yu, YAN Lian-Shan**, YI An-Lin, PAN Wei, LUO Bin . Simultaneous PMD Mitigation for Two Polarization Tributaries of a PDM Signal using only One All-Optical Regenerator[J]. Chin. Phys. Lett., 2011, 28(9): 024205
[7] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 024205
[8] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 024205
[9] YANG Zhen-Jun, MA Xue-Kai, ZHENG Yi-Zhou, GAO Xing-Hui, LU Da-Quan, HU Wei** . Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response[J]. Chin. Phys. Lett., 2011, 28(7): 024205
[10] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 024205
[11] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 024205
[12] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 024205
[13] FU Yu-Xin, ZHAO Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Peng** . Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 024205
[14] SONG Yue, HUO Shu-Li, LI Pei-Ying, SANG Su-Ling, WANG Zhi-Guo**, ZHANG Yan-Peng** . Interplay of Coexisting Odd-Order Wave Mixings in a Five-Level Atomic System[J]. Chin. Phys. Lett., 2011, 28(2): 024205
[15] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 024205
Viewed
Full text


Abstract