Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 126102    DOI: 10.1088/0256-307X/26/12/126102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity
KANG Yan-Shuang1,2,3, WANG Hai-Jun1,3,4
1College of Chemistry and Environment Science, Hebei University, Baoding 0710022College of Science, Agriculture University of Hebei, Baoding 0710013Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 0710024International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
Cite this article:   
KANG Yan-Shuang, WANG Hai-Jun 2009 Chin. Phys. Lett. 26 126102
Download: PDF(420KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Within the framework of the density functional theory for classical fluids, the equilibrium density profiles of charged hard sphere fluid confined in micro-cavity are studied by means of the modified fundamental measure theory. The dimension of micro-cavity, the charge of hard sphere and the applied electric field are found to have significant effects on the density profiles. In particular, it is shown that Coulomb interaction, excluded volume interaction and applied electric field play the central role in controlling the aggregated structure of the system.
Keywords: 61.20.Gy      61.20.Qg      61.46.-w      77.84.Nh     
Received: 16 July 2009      Published: 27 November 2009
PACS:  61.20.Gy (Theory and models of liquid structure)  
  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
  61.46.-w (Structure of nanoscale materials)  
  77.84.Nh (Liquids, emulsions, and suspensions; liquid crystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/126102       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/126102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KANG Yan-Shuang
WANG Hai-Jun
[1] Wu J Z and Li Z D 2007 Annu. Rev. Phys. Chem. 58 85
[2] Fu D and Li X S 2006 J. Chem. Phys. 125 084716
[3] Kierlik E and Rosinberg M L 1991 Phys. Rev. A 44 5025
[4] Jackson G, Chapman W G and Gubbins K E 1988 Mol.Phys. 65 1
[5] Schweizer K S and Curro J G 1997 Adv. Chem. Phys. 98\,1
[6] Cummings P T and Stell G 1982 Mol. Phys. 46383
[7] Zhou S Q 2007 Theor. Chem. Acc. 117 555
[8] Wertheim M S 1984 J. Stat. Phys. 35 19
[9] Wertheim M S 1984 J. Stat. Phys. 35 35
[10] Wertheim M S 1986 J. Stat. Phys. 42 459
[11] Wertheim M S 1986 J. Stat. Phys. 42 477
[12] Barker J A and Henderson D 1976 Rev. Mod. Phys. 48 587
[13] Zhou S Q and Solana J R 2009 Chem. Rev. 1092829
[14] Weeks J D, Chandler D and Anderson H C 1971 J. Chem.Phys. 54 5237
[15] Barker J A and Henderson D 1967 J. Chem. Phys. 47 2856
[16] Mon K K 2001 Phys. Rev. E 63 061203
[17] Zhou S Q 2006 Phys. Rev. E 74 031119
[18] Zhou S Q 2009 Phys. Rev. E 79 011126
[19] Degreve L and Henderson D 1994 J. Chem. Phys. 100 1606
[20] Calleja M, North A N, Powels J G and Rickayzen G 1991 Mol. Phys. 73 973
[21] Evans R 1979 Adv. Phy. 28 143
[22] Henderson D 1992 Fundamentals of InhomogeneousFluids (New York: Dekker)
[23] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775
[24] Tarazona P 1985 Phys. Rev. A 31 2672
[25] Curtin W A and Ashcroft N W 1985 Phys. Rev. A 32 2909
[26] Zhou S Q 2000 Phys. Rev. E 61 2704
[27] Zhou S Q 2002 New. J. Phys. 4 36
[28] Leidl R and Wagner H 1993 J. Chem. Phys. 984142
[29] Zhou S Q and Ruckenstein E 2000 J. Chem. Phys. 112 8079
[30] Zhou S Q 2000 J. Chem. Phys. 113 8719
[31] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
[32] Percus J K and Yevick G J 1958 Phys. Rev. 1101
[33] Rosenfeld Y 1994 Phys. Rev. E 50 3318
[34] Rosenfeld Y, Schmidt M, Lowen H and Tarazona P 1997 Phys. Rev. E 55 4245
[35] Roth R, Evans R, Lang A and Kahl G 2002 J. Phys.:Condens. Matter 14 12063
[36] Yu Y X and Wu J Z 2002 J. Chem. Phys. 11710156
[37] Yu Y X, Wu J Z, You F Q and Gao G H 2005 Chin. Phys.Lett. 22 246
[38] Gillespie D, Nonner W and Eisenberg R S 2003 Phys.Rev. E 68 031503
[39] Yu Y X, Wu J Z and Gao G H 2004 J. Chem. Phys. 120 7223
[40] Wang K, Yu Y X and Gao G H 2004 J. Chem. Phys. 128 185101
[41] Zhou S Q 2006 J. Chem. Phys. 124 144501
[42] Zhou S Q 2001 J. Chem. Phys. 115 2212
[43] Zhou S Q 2001 Phys. Rev. E 63 061206
Related articles from Frontiers Journals
[1] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 126102
[2] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 126102
[3] SUN Zong-Li, KANG Yan-Shuang . Curvature Dependence of Interfacial Properties for Associating Lennard–Jones Fluids: A Density Functional Study[J]. Chin. Phys. Lett., 2011, 28(2): 126102
[4] ZHANG Xiao-Fei, ZHANG Chu-Hang, LV Neng, XIE Jian-Ping, YE Gao-Xiang,. Condensation Behavior of Ag Aggregates on Liquid Surfaces[J]. Chin. Phys. Lett., 2010, 27(9): 126102
[5] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 126102
[6] ZHANG Fu-Chun, SHA Mao-Lin, REN Xiu-Ping, WU Guo-Zhong, HU Jun, ZHANG Yi. Morphology and Wettability of [Bmim][PF6] Ionic Liquid on HOPG Substrate[J]. Chin. Phys. Lett., 2010, 27(8): 126102
[7] TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei, LI Xue-Fei, CUI Qi-Liang, CUI Tian, LIU Bing-Bing, ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa[J]. Chin. Phys. Lett., 2010, 27(2): 126102
[8] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 126102
[9] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 126102
[10] LI Gong, DONG Yan-Guo, HUANG Lei, HE Guo-Wei, LIU Ri-Ping, WANGWen-Kui. High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(8): 126102
[11] YAN Zheng-Xin, DENG Jun, WANF Ya-Min, LIU Wei. Comparative Study of Activity of Different Agings of Aluminum Nanopowders[J]. Chin. Phys. Lett., 2009, 26(8): 126102
[12] LI Yan-Rong, LIU Hai-Qing, LIU Ying, SU Shao-Kui, WANG Yun-Ping. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets[J]. Chin. Phys. Lett., 2009, 26(7): 126102
[13] LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 126102
[14] CHEN Yu-Li, LIU Bin, YIN Ya-Jun, HUANG Yong-Gang, HWUANG Keh-Chih. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology[J]. Chin. Phys. Lett., 2008, 25(7): 126102
[15] ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture[J]. Chin. Phys. Lett., 2008, 25(6): 126102
Viewed
Full text


Abstract