Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 114210    DOI: 10.1088/0256-307X/26/11/114210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy
SUN Wen-Feng1, WANG Xin-Ke2, ZHANG Yan1
1Beijing Key Lab for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics (Ministry of Education), Department of Physics, Capital Normal University, Beijing 1000482Department of Physics, Harbin Institute of Technology, Harbin 150001
Cite this article:   
SUN Wen-Feng, WANG Xin-Ke, ZHANG Yan 2009 Chin. Phys. Lett. 26 114210
Download: PDF(374KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method to measure the refractive index for high reflectance materials in the terahertz range with terahertz time domain reflection spectroscopy is proposed. In this method, the THz waveforms reflected by a silicon wafer and high reflectance sample are measured respectively. The refractive index of the silicon wafer, measured with the THz time domain transmission spectroscopy, is used as a reference in the THz time domain reflective spectroscopy. Therefore, the complex refractive index of the sample can be obtained by resorting to the known reflective index of the silicon and the Fresnel law. To improve the accuracy of the phase shift, the Kramers-Kronig transform is adopted. This method is also verified by the index of the silicon in THz reflection spectroscopy. The bulk metal plates have been taken as the sample, and the experimentally obtained metallic refractive indexes are compared with the simple Drude model.
Keywords: 42.25.Gy      02.70.Hm      07.57.-c     
Received: 11 August 2009      Published: 30 October 2009
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  02.70.Hm (Spectral methods)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/114210       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/114210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Wen-Feng
WANG Xin-Ke
ZHANG Yan
[1] Chen H and Wang L 2009 Chin. Phys. Lett. 26054209
[2] Zhou Z, Chen A T and Feng L S 2009 Chin. Phys. Lett. 26 037801
[3] Jepsen P U, Jensen J K and M{\oller U 2008 Opt.Express 16 9318
[4] Danten Y, Besnard M, Delagnes J C and Mounaix P 2008 Appl. Phys. Lett. 92 214102
[5] Scheller M, Jansen C and Koch M 2009 Opt. Commun. 282 1304
[6] Exter M V, Fattinger C and Grischkowsky D 1989 Opt.Lett. 14 1128
[7] Jeon T and Grischkowsky D 1998 Appl. Phys. Lett. 72 3032
[8] Ortolani M, Lee J S, Schade U and H\"{ubers H W 2008 Appl. Phys. Lett. 93 081906
[9] Nashima S, Morikawa O, Takata K and Hangyo M 2001 Appl. Phys. Lett. 79 3923
[10] Exter M V and Grischkowsky D 1990 Appl. Phys. Lett. 56 1694
[11] Randall C M and Rawcliffe R D 1967 Appl. Opt. 6 1889
Related articles from Frontiers Journals
[1] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 114210
[2] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 114210
[3] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 114210
[4] YAN Ying-Zhan, JI Zhe, YAN Shu-Bin**, LIU Jun, XUE Chen-Yang, ZHANG Wen-Dong, XIONG Ji-Jun** . Enhancing the Robustness of the Microcavity Coupling System[J]. Chin. Phys. Lett., 2011, 28(3): 114210
[5] LIN Yan-He, ZHU Qi-Biao, ZHANG Yan,. Opposite Goos-Hänchen Displacements for TE- and TM-Polarized Beams Transmitting through a Slab of Indefinite Metamaterial[J]. Chin. Phys. Lett., 2010, 27(7): 114210
[6] YANG Li-Li, LIU Gang-Qin, PAN Xin-Yu, CHEN Dong-Min. Design and Application of a Near Field Microwave Antenna for the Spin Control of Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2010, 27(3): 114210
[7] LI Chao, YAO Kan, LI Fang. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks[J]. Chin. Phys. Lett., 2009, 26(6): 114210
[8] ZHOU Zhen, CHEN An-Tao, FENG Li-Shuang. Studies on 2,4-DNT Mixtures Using Reflection Terahertz Time Domain Spectroscopy for Explosives Detection[J]. Chin. Phys. Lett., 2009, 26(3): 114210
[9] ZHANG Zhi-Wei, WEN Ting-Dun, ZHANG Ji-Long,. A Novel Method for Enhancing Goos-Hänchen Shift in Total Internal Reflection[J]. Chin. Phys. Lett., 2009, 26(3): 114210
[10] CHEN Guo-Jie, HUANG De-Xiu, ZHANG Xin-Liang, CAO Hui, CHEN Wei-Cheng. A Proposal and Demonstration for Photonic Generation of a Microwave Signal by Incorporating a Microring Resonator[J]. Chin. Phys. Lett., 2009, 26(3): 114210
[11] QI Chun-Chao, ZUO Du-Luo, LU Yan-Zhao, TANG Jian, YANG Chen-Guang, KE Lin-Da, CHENG Zu-Hai,. An Efficient Photon Conversion Efficiency Ammonia Terahertz Cavity Laser[J]. Chin. Phys. Lett., 2009, 26(12): 114210
[12] LI Gang, ZHANG Yi, XU Yan-Ji, LIN Bin, LI Yu-Tong, ZHU Jun-Qiang. Measurement of Plasma Density Produced in Dielectric Barrier Discharge for Active Aerodynamic Control with Interferometer[J]. Chin. Phys. Lett., 2009, 26(10): 114210
[13] JIANG Tao, CUI Wan-Zhao, MA Wei, YUAN Yu, WANG Dong-Xing, RANLi-Xin. High Directive Cavity Antenna Based on One-Dimensional LHM-RHM Resonator[J]. Chin. Phys. Lett., 2009, 26(10): 114210
[14] CHENG Min, CHEN Rong. Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal[J]. Chin. Phys. Lett., 2009, 26(1): 114210
[15] DUAN Tao, GE Guo-Ku, LI Chun-Fang, JIN Peng-Cheng. Microwave Experimental Observation of Transmitted Enhanced Goos--Hänchen Displacement in Symmetry-Double-Prism Configuration[J]. Chin. Phys. Lett., 2008, 25(7): 114210
Viewed
Full text


Abstract