Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 017201    DOI: 10.1088/0256-307X/26/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Negative Magnetoresistivity of ErBi and Its Crystal-Field Levels
LIU Zhao-Sen1, Divis Martin2, Sechovsky Vladimir2
1Faculty of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 2100442Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
Cite this article:   
LIU Zhao-Sen, Divis Martin, Sechovsky Vladimir 2009 Chin. Phys. Lett. 26 017201
Download: PDF(340KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical approach is generalized and employed in this work to evaluate the magnetoresistivity of ErBi in external magnetic fields. The calculated results and theoretical analyses show that when an external magnetic field is applied in the z-direction, the magnetoresistivity can be reduced considerably due to the degeneracy lifting of the crystal-field levels. However, when the magnetic field is exerted along the x-axis, the magnetoresistivity will be increased because of the formations of new magnetic states of the Er ion and its transitions within and between these new states.
Keywords: 72.10.-d      75.47.-m      75.10.Dg     
Received: 11 June 2008      Published: 24 December 2008
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/017201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/017201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zhao-Sen
Divis Martin
Sechovsky Vladimir
[1] Kasuya T 1956 Proc. Theor. Phys. 16 58
[2] Dekker A J 1965 J. Appl. Phys. 36 909
[3] Rao V U S and Wallace W E 1970 Phys. Rev. B 24613
[4] Barthem V M T, Gignox D, Nait-Saada A and Schmitt D 1988 Phys. Rev. B 37 1733
[5] Bakanowski S, Crow J E, Berk N F and Mihalisin T 1975 Solid State Commun. 17 1111
[6] Frauenheim Th, Matz W and Feller G 1979 Solid StateCommun. 29 805
[7] Christen M 1980 Solid State Commun. 36 571
[8] Liu Z S and Eschrig H 2006 Physica B 381 294
[9] Liu Z S and Guo S L 2003 Phys. Lett. A 314244
[10] Liu Z S and Guo S L 2003 Phys. Lett. A 314491
[11] Liu Z S 2004 Solid State Commun. 131 135
[12] Wada H, Imai H and Shima M 1995 J. AlloysCompounds 218 73
[13] Liu Z S, Divi{\v s M and Sechovsk{\' y V 2008 Physica B 403 3439
[14] Liu Z S, Divi{\v s M and Sechovsk{\' y V 2005 Physica B 367 48
[15] Lea K R, Leask M J and Wolf W P 1962 J. Phys. Chem.Solids 23 1381
Related articles from Frontiers Journals
[1] YUAN Xiao-Bo, REN Jun-Feng, HU Gui-Chao. Effect of Carrier Differences on Magnetoresistance in Organic and Inorganic Spin Valves[J]. Chin. Phys. Lett., 2012, 29(6): 017201
[2] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 017201
[3] PENG Lin**, LIU Yong-Sheng, CAI Chuan-Bing, ZHANG Jin-Cang . Influence of Magnetic Scattering and Interface Transparency on Superconductivity Based on a Ferromagnet/Superconductor Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 017201
[4] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 017201
[5] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 017201
[6] ZHANG Yan, SHENG Peng, LIU Wen-Ming, SHU Qi, GU Zhi-Hua, NI Gang,. Influence of Substrate on the Transportation Properties of Co/Alq3 Granular Films on a Si Wafer[J]. Chin. Phys. Lett., 2010, 27(7): 017201
[7] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 017201
[8] WU Li-Hua, ZHANG Xiao-Zhong, ZHANG Xin, WAN Cai-Hua, GAO Xi-Li, TAN Xin-Yu, YUAN Jun. Bias Voltage Controlled Positive Magnetoresistance of Fe0.05-C0.95/Si Heterostructures[J]. Chin. Phys. Lett., 2009, 26(8): 017201
[9] LIU Zhao-Sen, Divis Martin, Sechovsky Vladimir. The Magnetic Properties of TbNi2B2C Investigated with a Two-Sublattice Model[J]. Chin. Phys. Lett., 2009, 26(6): 017201
[10] YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 017201
[11] LIU Zhao-Sen, Divis Martin, Sechovský, Vladimir. Magnetic Orderings and Néel Temperature of TbNi2B2C[J]. Chin. Phys. Lett., 2009, 26(10): 017201
[12] NIU Jun, YANG Zhi, CHANG Ben-Kang. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode[J]. Chin. Phys. Lett., 2009, 26(10): 017201
[13] SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 017201
[14] LI Hai-Hong, LI Dong-Mei, LI Yuan, GAO Kun, LIU De-Sheng, XIE Shi-Jie. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure[J]. Chin. Phys. Lett., 2008, 25(8): 017201
[15] CHEN Gui-Chu, FAN Guang-Han. Comparison of Gain Properties with Electron--Electron and Electron--LO-Phonon Interactions in Quantum Cascade Structure[J]. Chin. Phys. Lett., 2008, 25(5): 017201
Viewed
Full text


Abstract